首页
/
每日頭條
/
圖文
/
高一函數求定義域和值域的題
高一函數求定義域和值域的題
更新时间:2025-11-28 07:53:25

高一數學第一次月考内容之三大函數的定義域和值域求解技巧

Hello,大家好,這裡是擺渡學涯。

值域的基本概念

定義域表示的是自變量的取值範圍,值域表示的是應變量的取值範圍。

如:函數y=x 4

x的取值範圍就是定義域,y的取值範圍就是值域。

自變量不同,求得的定義域也是不同的,值域當然也是不同的。

總結一個簡單的方法:先找到自變量和應變量,自變量的取值範圍組成的集合就是定義域,應變量的取值範圍組成的集合就是值域。

三類函數值域定義域求解技巧

高一函數求定義域和值域的題(高一數學第一次月考内容之三大函數的定義域和值域求解技巧)1

類型1:一次函數

定義域為R,值域為R。當一次項的系數為時,函數單調遞增,在給定區間上按照單調性進行值域的求解即可。當一次項的系數為時,函數單調遞減,在給定區間上按照單調性進行值域的求解即可。

例題1:求f(x)=4 x 4,在(3,4)上的值域

解:f(x)在R上單調遞增,所以f(x)的值域為:(f(3),f(4))即函數的值域為:(16,20)

例題2:求f(x)=-4 x 4,在(3,4)上的值域

解:f(x)在R上單調遞減,所以f(x)的值域為:(f(4),f(3))即函數的值域為:(-8,-12)

高一函數求定義域和值域的題(高一數學第一次月考内容之三大函數的定義域和值域求解技巧)2

類型2:二次函數

二次函數的單調性和開口方向有關。

當二次函數開口向時,在對稱軸的左側函數單調遞增,對稱軸的右側單調遞減,且離對稱軸越遠,函數值越大。在對稱軸處函數有最小值。

當二次函數開口向時,在對稱軸的左側函數單調遞減,對稱軸的右側單調遞增,且離對稱軸越遠,函數值越小。在對稱軸處函數有最大值。

解題技巧:在給定區間上求值域時,需要判斷給定區間包含對稱軸不,不包含對稱軸的利用函數單調性,或者我們上面講的距離對稱軸的距離遠近的值的大小進行判斷也行。

下面給出例子說明:

例題3:

F(x)=2 x的平方 1,求f(x)在(3,4)上的值域

首先判斷開口方向是向上的,其次求出對稱軸為x=0,再次判斷給定區間是否包含對稱軸x=0,不包含的話,按照開口向上的二次函數離對稱軸越遠,函數值越大的規律進行求解值域即可。

所以值域為:(F(3),F(4))即:(19,33)

高一函數求定義域和值域的題(高一數學第一次月考内容之三大函數的定義域和值域求解技巧)3

例題4:

F(x)=-2 x的平方 1,求f(x)在(3,4)上的值域

首先判斷開口方向是向上的,其次求出對稱軸為x=0,再次判斷給定區間是否包含對稱軸x=0,不包含的話,按照開口向下的二次函數離對稱軸越遠,函數值越大的規律進行求解值域即可。

所以值域為:(F(4),F(3))即:(-31,-17)

類型3:反比例函數

形式:f(x)=k/x,定義域為{x|x不等于0},當k>0時,圖像在一三象限在每一個象限内y随x增大而減小。當k<0時,圖像在一三象限在每一個象限内y随x增大而增大。

例題5:求f(x)=8/x在(4,8)時,求f(x)的值域

根據上面給出的概念進行相關的計算即可

f(x)在(4,8)上單調遞減,f(x)的值域為(f(8),f(4))即:(1,2)

例題6:求f(x)=-8/x在(4,8)時,求f(x)的值域

根據上面給出的概念進行相關的計算即可

f(x)在(4,8)上單調遞增,f(x)的值域為(f(4),f(8))即:(-2,-1)

本次課程咱們就先學習到這裡了,咱們下次課再見。如您還有相關的疑問,請在下方留言,我們将第一時間給以您滿意的答複哦!

高一函數求定義域和值域的題(高一數學第一次月考内容之三大函數的定義域和值域求解技巧)4

敲黑闆畫重點,靠前務必将這些内容複習到位哦!

​聲明:本文為擺渡學涯的原創文章,未經作者同意不得進行相關的轉載和複制,翻版必究!請務必尊重他人的勞動成果。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
社恐和内向的區别
社恐和内向的區别
社恐和内向的區别?(原創:千嶺之松)像一隻松鼠,誤入草地,我來為大家科普一下關于社恐和内向的區别?以下内容希望對你有幫助!社恐和内向的區别(原創:千嶺之松)像一隻松鼠,誤入草地被邀請參加羊群的歡聚禮貌地點頭緻意。笑眯眯地看一場營業性地交談,...
2025-11-28
鮮奶油打發後做什麼
鮮奶油打發後做什麼
鮮奶油打發後做什麼?錯誤示範:因為打發動物鮮奶油時容器底部沒有墊冰塊,溫度太高,造成奶油變成像豆腐渣一樣的狀态鮮奶油變得像豆腐渣動物鮮奶油色澤呈淡黃色,有濃郁的奶香味,口感香滑細膩,入口即化用于制作甜點時可增加潤滑口感及奶香味,我來為大家科...
2025-11-28
藏青色淑女風搭配
藏青色淑女風搭配
設計師意圖以柔美的曲線及多元的色塊組合定義空間氛圍基調藍粉的碰撞似繁花與天空海浪的相遇冷暖交融中流露出平靜自信亦有無窮柔美氣質打破傳統尺寸的定制長桌造型簡練協調吊頂造型運用金屬波紋闆材質猶如湖面倒影般朦胧感藝術擺件放置其中為原本靜谧的空間氛...
2025-11-28
六個月哈士奇怎麼喂養
六個月哈士奇怎麼喂養
哈士奇特别的有意思,特别的可愛,生出來就是可愛的樣子,那麼還是有人好奇哈奇士怎麼斷奶多久斷奶。這些疑惑讓我們想不到哈士奇怎麼斷奶了,哪個時間斷奶比較健康。一般哈士奇怎麼斷奶,小編就來和各位養狗的狗主人讨論一下。哈士奇一般四十五天斷奶比較合适...
2025-11-28
細川知榮子怎麼死的
細川知榮子怎麼死的
在1935年1月1日,誕生了一位撼動整個70年代,并且影響力至今的少女漫畫家,她的名字叫做細川知榮子,《王家的紋章》(又名《尼羅河女兒》)正是她的作品。說起來都是淚《王家的紋章》是細川知榮子最知名的作品,多少古董粉從孩童時開始追起直到當了媽...
2025-11-28
Copyright 2023-2025 - www.tftnews.com All Rights Reserved