最近在研究評分卡建模的流程,在特征處理的過程中涉及到分箱這一基本的常用技巧,本文就對分箱中的卡方分箱展開詳細介紹。 分箱就是将連續型的數據離散化,比如年齡這個變量是,可以分箱為0-18,18-30,30-45,45-60。這也是建立評分卡過程中常見的操作,首先思考一個問題,為什麼要進行分箱?直接用年齡這個變量去建模是否可以?其實是可以的。隻不過評分卡需要模型有很強的業務可解釋性,這和你的建模算法有關。如果你用xgb、lgb等機器學習算法的話,模型會變得不可解釋,此時不分箱也是可以的。 分箱的好處主要有這些:
- 分箱後的特征對異常數據有更強的魯棒性。比如年齡中有一個異常值為300,分箱之後就可能劃到>80這一箱中,而如果直接入模的話會對模型造成很大幹擾。
- 特征離散化之後,每個變量有單獨的權重,可以為邏輯回歸模型引入了非線性,能夠提升模型表達能力,加大拟合。
- 特征離散化以後,起到了簡化了邏輯回歸模型的作用,降低了模型過拟合的風險。
- 可以将缺失作為獨立的一類帶入模型。
- 稀疏向量内積乘法運算速度快,計算結果方便存儲,容易擴展。
下面開始介紹卡方分箱,首先要先了解卡方檢驗。因為卡方分箱是一種基于卡方檢驗的分箱方法,具體來說是基于卡方檢驗中的獨立性檢驗來實現分箱功能。
卡方檢驗
卡方檢驗就是對分類數據的頻數進行分析的一種方法,它的應用主要表現在兩個方面:拟合優度檢驗和獨立性檢驗(列聯分析)。
- 拟合優度檢驗 拟合優度是對一個分類變量的檢驗,即根據總體分布狀況,計算出分類變量中各類别的期望頻數,與分布的觀察頻數進行對比,判斷期望頻數與觀察頻數是否有顯著差異,從而達到對分類變量進行分析的目的。比如,泰坦尼克号中我們觀察幸存者是否與性别有關,可以理解為一個X是否與Y有必然聯系。
- 獨立性檢驗 獨立性檢驗是兩個特征變量之間的計算,它可以用來分析兩個分類變量是否獨立,或者是否有關聯。比如某原料質量和産地是否依賴關系,可以理解為一個X與另一個X是否獨立。
卡方檢驗步驟
卡方檢驗也是一種假設檢驗,與常見的假設檢驗方法一緻。
- 提出假設,比如假設兩個變量之間獨立
- 根據分類的觀察頻數計算期望頻數
- 根據卡方公式,計算實際頻數與期望頻數的卡方值
- 根據自由度和事先确定的顯著性水平,查找卡方分布表計算卡法值,并與上一步卡方值比較
- 得出結果判斷是否拒絕原假設
評分卡中的卡方分箱
下面以年齡變量為例,講解一下評分卡建模過程中如何對年齡變量進行卡方分箱。先舉實際例子再講理論。
首先,将年齡從小到大排序,每一個年齡取值為單獨一箱。統計對應的違約和不違約的個數。然後進行合并,具體步驟如下:
- 如果有1,2,3,4個分箱,那麼就需要綁定相鄰的兩個分箱,共三組:12,23,34。然後分别計算三個綁定組的卡方值。
- 從計算的卡方值中找出最小的一個,并把這兩個分箱合并:比如,23是卡方值最小的一個,那麼就将2和3合并,本輪計算中分箱就變為了1,23,4。
分箱背後的理論依據:如果兩個相鄰的區間具有非常類似的類分布,那麼這兩個區間可以合并。否則,它們應該分開。低卡方值表明它們具有相似的類分布。
對于卡方值越小分布越相似這一核心理論我也做了個簡單的推導:
可以看到如果需要合并的兩箱分布完全一緻的話,合并之後的卡方值為0。下面給出卡方分箱的理論及公式:
上面的步驟隻是每一輪需要計算的内容,如果不設置停止條件,算法就會一直運行。當然,我們一般會設置一些停止條件:
- 卡方停止的阈值
- 分箱數目的限制
根據經驗值,卡方停止的阈值一般設置置信度為0.9、0.95、0.99,自由度可以設置為4是對應的卡方值,分箱數一般可以設置為5。卡方分箱的自由度是分類變量類型的個數減一。
下面給一個卡方分箱的代碼,建議仔細閱讀,有助于代碼水平的提高和更好地理解卡方分箱。一定要一次性看完。
## 自寫卡方最優分箱過程
def get_chi2(X, col):
'''
計算卡方統計量
'''
# 計算樣本期望頻率
pos_cnt = X['Defaulter'].sum()
all_cnt = X['Defaulter'].count()
expected_ratio = float(pos_cnt) / all_cnt
# 對變量按屬性值從大到小排序
df = X[[col, 'Defaulter']]
df = df.dropna()
col_value = list(set(df[col]))
col_value.sort()
# 計算每一個區間的卡方統計量
chi_list = []
pos_list = []
expected_pos_list = []
for value in col_value:
df_pos_cnt = df.loc[df[col] == value, 'Defaulter'].sum()
df_all_cnt = df.loc[df[col] == value,'Defaulter'].count()
expected_pos_cnt = df_all_cnt * expected_ratio
chi_square = (df_pos_cnt - expected_pos_cnt)**2 / expected_pos_cnt
chi_list.append(chi_square)
pos_list.append(df_pos_cnt)
expected_pos_list.append(expected_pos_cnt)
# 導出結果到dataframe
chi_result = pd.DataFrame({col: col_value, 'chi_square':chi_list,
'pos_cnt':pos_list, 'expected_pos_cnt':expected_pos_list})
return chi_result
def chiMerge(chi_result, maxInterval=5):
'''
根據最大區間數限制法則,進行區間合并
'''
group_cnt = len(chi_result)
# 如果變量區間超過最大分箱限制,則根據合并原則進行合并,直至在maxInterval之内
while(group_cnt > maxInterval):
## 取出卡方值最小的區間
min_index = chi_result[chi_result['chi_square'] == chi_result['chi_square'].min()].index.tolist()[0]
# 如果分箱區間在最前,則向下合并
if min_index == 0:
chi_result = merge_chiSquare(chi_result, min_index 1, min_index)
# 如果分箱區間在最後,則向上合并
elif min_index == group_cnt-1:
chi_result = merge_chiSquare(chi_result, min_index-1, min_index)
# 如果分箱區間在中間,則判斷兩邊的卡方值,選擇最小卡方進行合并
else:
if chi_result.loc[min_index-1, 'chi_square'] > chi_result.loc[min_index 1, 'chi_square']:
chi_result = merge_chiSquare(chi_result, min_index, min_index 1)
else:
chi_result = merge_chiSquare(chi_result, min_index-1, min_index)
group_cnt = len(chi_result)
return chi_result
def cal_chisqure_threshold(dfree=4, cf=0.1):
'''
根據給定的自由度和顯著性水平, 計算卡方阈值
'''
percents = [0.95, 0.90, 0.5, 0.1, 0.05, 0.025, 0.01, 0.005]
## 計算每個自由度,在每個顯著性水平下的卡方阈值
df = pd.DataFrame(np.array([chi2.isf(percents, df=i) for i in range(1, 30)]))
df.columns = percents
df.index = df.index 1
pd.set_option('precision', 3)
return df.loc[dfree, cf]
def chiMerge_chisqure(chi_result, dfree=4, cf=0.1, maxInterval=5):
threshold = cal_chisqure_threshold(dfree, cf)
min_chiSquare = chi_result['chi_square'].min()
group_cnt = len(chi_result)
# 如果變量區間的最小卡方值小于阈值,則繼續合并直到最小值大于等于阈值
while(min_chiSquare < threshold and group_cnt > maxInterval):
min_index = chi_result[chi_result['chi_square']==chi_result['chi_square'].min()].index.tolist()[0]
# 如果分箱區間在最前,則向下合并
if min_index == 0:
chi_result = merge_chiSquare(chi_result, min_index 1, min_index)
# 如果分箱區間在最後,則向上合并
elif min_index == group_cnt-1:
chi_result = merge_chiSquare(chi_result, min_index-1, min_index)
# 如果分箱區間在中間,則判斷與其相鄰的最小卡方的區間,然後進行合并
else:
if chi_result.loc[min_index-1, 'chi_square'] > chi_result.loc[min_index 1, 'chi_square']:
chi_result = merge_chiSquare(chi_result, min_index, min_index 1)
else:
chi_result = merge_chiSquare(chi_result, min_index-1, min_index)
min_chiSquare = chi_result['chi_square'].min()
group_cnt = len(chi_result)
return chi_result
def merge_chiSquare(chi_result, index, mergeIndex, a = 'expected_pos_cnt',
b = 'pos_cnt', c = 'chi_square'):
'''
按index進行合并,并計算合并後的卡方值
mergeindex 是合并後的序列值
'''
chi_result.loc[mergeIndex, a] = chi_result.loc[mergeIndex, a] chi_result.loc[index, a]
chi_result.loc[mergeIndex, b] = chi_result.loc[mergeIndex, b] chi_result.loc[index, b]
## 兩個區間合并後,新的chi2值如何計算
chi_result.loc[mergeIndex, c] = (chi_result.loc[mergeIndex, b] - chi_result.loc[mergeIndex, a])**2 /chi_result.loc[mergeIndex, a]
chi_result = chi_result.drop([index])
## 重置index
chi_result = chi_result.reset_index(drop=True)
return chi_result
import copy
chi_train_X = copy.deepcopy(train_X)
## 對數據進行卡方分箱,按照自由度進行分箱
chi_result_all = dict()
for col in chi_train_X.columns:
print("start get " col " chi2 result")
chi2_result = get_chi2(train, col)
chi2_merge = chiMerge_chisqure(chi2_result, dfree=4, cf=0.05, maxInterval=5)
chi_result_all[col] = chi2_merge
>【作者】:Labryant
>【原創公衆号】:風控獵人
>【簡介】:某創業公司策略分析師,積極上進,努力提升。乾坤未定,你我都是黑馬。
>【轉載說明】:轉載請說明出處,謝謝合作!~
,