首页
/
每日頭條
/
圖文
/
對數與函數基本知識
對數與函數基本知識
更新时间:2026-01-30 01:35:01
對數函數y=ln(1/2 x^2/3)的性質及其圖像


主要内容:

本文主要介紹函數的y=ln(1/2 x^2/3)的定義域、單調性、凸凹性、極限、奇偶性等性質,并通過導數計算函數的單調區間和凸凹區間,同時簡要畫出函數的示意圖。

對數與函數基本知識(對數函數yln1)1

※.函數的定義域

根據函數特征,1/2 x^2/3>0,所以函數y=ln(1/2 x^2/3)的定義域為全體實數,即函數的定義域為:(-∞, ∞)。


※.函數的單調性

因為函數y1=lnx在定義域上為增函數,函數y2=1/2 x^2/3為二次函數,當x>0時為增函數,當x<0時為減函數,所以二者的複合函數y=ln(1/2 x^2/3)的單調性與函數y2的函數單調性一緻。

本題還可以通過導數知識來解析函數的單調性,步驟如下。

y=ln(1/2 x^2/3),對x求導,有:

dy/dx=(2*x/3)/(1/2 x^2/3)

=4x/(2x^2 3)=4x/(2x^2 3),可知:

(1)當x∈(-∞,0]時,dy/dx<0,此時函數為減函數;

(2)當x∈[0, ∞)時,dy/dx>0,此時函數為增函數。

對數與函數基本知識(對數函數yln1)2

※.函數的凸凹性

對dy/dx=4x/(2x^2 3)繼續求導數,有:

d^2y/dx^2=4*(2x^2 3-x*2*2x)/(2x^2 3)^2,

=-2*(2x^2-3)/(2x^2 3)^2.

令d^2y/dx^2=0,則2x^2-3=0,求出x=±(1/2)√6,此時函數的凸凹性為:

(1)當x∈[-(1/2)√6,(1/2)√6]時,d^2y/dx^2>0,函數為凹函數;

(2)當x∈(-∞,-(1/2)√6∪((1/2)√6, ∞)時,d^2y/dx^2<0,函數為凸函數.


※.函數的奇偶性

∵f(x)=ln(1/2 x^2/3);

∴f(-x)=ln[1/2 (-x)^2/3]=ln(1/2 x^2/3)=f(x),

即函數f(x)為偶函數。


※.函數的極限

Lim(x→-∞) ln(1/2 x^2/3)= ∞;

Lim(x→ ∞) ln(1/2 x^2/3)= ∞;


對數與函數基本知識(對數函數yln1)3

※.函數的示意圖

對數與函數基本知識(對數函數yln1)4

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
為什麼現在單身的特别多(單身為什麼越來越多了)
為什麼現在單身的特别多(單身為什麼越來越多了)
  “這一晃,十來年過去了……唉是啊,我一直單着,你也是。哦,你離了?咳,也好……”   前不久,小編和一些多年不見的老同學聚會,二十來個人,無論男女,超過一半都單身。   其中三個人,之前結過婚,後來都離了,獨自生活。   這大概就是當今社會的一個切片。      就小編我所知,那些和我基本同齡的熟人,常年一個人過日子的,多得是。   我的老媽,前些年也沒...
2026-01-30
越巫自取滅亡的原因(先秦典籍中的火葬探析
越巫自取滅亡的原因(先秦典籍中的火葬探析
  先秦典籍中的火葬探析   姚海濤   (青島理工大學琴島學院,山東青島 266106)   摘要:火葬習俗古已有之。先秦典籍中保留了有關火葬的大量文本證據。大體言之,《周易》中的離卦與火葬有着密切關系,作為刑法處罰方式而存在,主要指向不孝子這一群體。而《墨子》《呂氏春秋》《荀子》《列子》中記錄的火葬主要是作為氐、羌以及儀渠民族的喪葬形制。透過這些現象側面...
2026-01-30
五年級數學簡便運算題20道有答案(五年級數學簡便運算方法)
五年級數學簡便運算題20道有答案(五年級數學簡便運算方法)
     在孩子的小學數學中,數學的學習,基本内容包含:對數的認識,數的運算,圖形的認識以及運算,還有就是對數的應用,這幾個部分,但是在從1年級到6年級一直學習的一項内容,而且貫穿始終的,那就是簡便運算。   在整數範圍、小數範圍、分數範圍内都會作為一個内容重複出現,而這個内容也正是小學數學中的一個難點。   一、提取公因式   這個方法實際上是運用了乘法分...
2026-01-30
人過四十後看淡簡單的生活(人到四十以後隻有)
人過四十後看淡簡單的生活(人到四十以後隻有)
     塵世間太多的情感,總是虛無缥缈,如水中之月,霧裡看花,追不到,摸不着,守不住,又放不下。   深陷紅塵的我們,常常會迷失在塵世之中,行色匆匆的專注趕路,卻忘了自己,也忘了看看沿途的風景。   一晃,已過而立之年,步入了不惑之年,此時,沉穩,從容才是大境界。   俗話說:四十不惑。過了四十,哪些事情應該堅持,哪些事情應該扔掉,心裡應該有數了。   人...
2026-01-30
蜜獾能跑得過老虎嗎(如果蜜獾遇上老虎)
蜜獾能跑得過老虎嗎(如果蜜獾遇上老虎)
  蜜獾作為非洲大草原上的一代戰神,人送外号“平頭哥”。号稱終身不是在打架,就是在去打架的路上。管你是誰,生死看淡不服就幹。于是就有人想到,如果老虎和蜜獾撞在了一起,那會怎麼樣?雖然有人說,蜜獾和老虎撞在一起的概率幾乎為0,但是這不能阻止我們進行設想啊。      這位是現在歐亞大陸公認的森林之王,紋身哥——老虎      紋身哥:搞事,搞事,搞事,叫平頭的...
2026-01-30
Copyright 2023-2026 - www.tftnews.com All Rights Reserved