首页
/
每日頭條
/
教育
/
導數高中數學知識點總結
導數高中數學知識點總結
更新时间:2025-04-02 14:43:18

導數高中數學知識點總結(高中數學導數知識點總結及應用)1

知識點總結

一. 導數概念的引入

1. 導數的物理意義:

瞬時速率。一般的,函數y=f(x)在x=

導數高中數學知識點總結(高中數學導數知識點總結及應用)2

處的瞬時變化率是

導數高中數學知識點總結(高中數學導數知識點總結及應用)3

2. 導數的幾何意義:

曲線的切線,當點

導數高中數學知識點總結(高中數學導數知識點總結及應用)4

趨近于P時,直線 PT 與曲線相切。容易知道,割線的斜率是

導數高中數學知識點總結(高中數學導數知識點總結及應用)5

當點

導數高中數學知識點總結(高中數學導數知識點總結及應用)6

趨近于 P 時,函數y=f(x)在x=處的導數就是切線PT的斜率k,即

導數高中數學知識點總結(高中數學導數知識點總結及應用)7

3. 導函數:

當x變化時,

導數高中數學知識點總結(高中數學導數知識點總結及應用)8

便是x的一個函數,我們稱它為f(x)的導函數. y=f(x)的導函數有時也記作

導數高中數學知識點總結(高中數學導數知識點總結及應用)9

,即

導數高中數學知識點總結(高中數學導數知識點總結及應用)10

二. 導數的計算

基本初等函數的導數公式:

導數高中數學知識點總結(高中數學導數知識點總結及應用)11

導數的運算法則:

導數高中數學知識點總結(高中數學導數知識點總結及應用)12

複合函數求導 :

y=f(u)和u=g(x),則稱y可以表示成為x的函數,即y=f(g(x))為一個複合函數。

三、導數在研究函數中的應用

1. 函數的單調性與導數:

一般的,函數的單調性與其導數的正負有如下關系:在某個區間(a,b)内

(1) 如果>0,那麼函數y=f(x)在這個區間單調遞增;

(2) 如果<0,那麼函數y=f(x)在這個區間單調遞減;

2. 函數的極值與導數:

極值反映的是函數在某一點附近的大小情況。

求函數y=f(x)的極值的方法有:

(1)如果在

導數高中數學知識點總結(高中數學導數知識點總結及應用)13

附近的左側>0 ,右側<0,那麼

導數高中數學知識點總結(高中數學導數知識點總結及應用)14

是極大值;

(2)如果在附近的左側<0 ,右側>0,那麼是極小值;

3. 函數的最大(小)值與導數:

求函數y=f(x)在[a,b]上的最大值與最小值的步驟:

(1)求函數y=f(x)在[a,b]内的極值;

(2) 将函數y=f(x)的各極值與端點處的函數值f(a),f(b)比較,其中最大的是最大值,最小的是最小值。

四. 推理與證明

(1)合情推理與類比推理

根據一類事物的部分對象具有某種性質,推出這類事物的所有對象都具有這種性質的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理。

根據兩類不同事物之間具有某些類似(或一緻)性,推測其中一類事物具有與另外一類事物類似的性質的推理,叫做類比推理。

類比推理的一般步驟:

(1) 找出兩類事物的相似性或一緻性;

(2) 用一類事物的性質去推測另一類事物的性質,得出一個明确的命題(猜想);

(3) 一般的,事物之間的各個性質并不是孤立存在的,而是相互制約的.如果兩個事物在某些性質上相同或相似,那麼他們在另一寫性質上也可能相同或類似,類比的結論可能是真的;

(4) 一般情況下,如果類比的相似性越多,相似的性質與推測的性質之間越相關,那麼類比得出的命題越可靠。

(2)演繹推理(俗稱三段論)

由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理。

(3)數學歸納法

1. 它是一個遞推的數學論證方法。

2. 步驟:

A. 命題在 n=1(或

導數高中數學知識點總結(高中數學導數知識點總結及應用)15

)時成立,這是遞推的基礎;

B.假設在 n=k 時命題成立;

C. 證明 n=k 1 時命題也成立。

完成這兩步,就可以斷定對任何自然數(或n≥,且n∈N)結論都成立。

證明方法:1、 反證法;2、分析法;3、綜合法;

解題技巧

熱點考向一 導數在方程中的應用

[典例1]

已知函數f(x)=x2-(a+4)x-2a2+5a+3(a∈R).

(1)當a=3時,求函數f(x)的零點;

(2)若方程f(x)=0的兩個實數根都在區間(-1,3)上,求實數a的取值範圍.

導數高中數學知識點總結(高中數學導數知識點總結及應用)16

[方法規律]

利用導數解決函數零點(方程的根)問題的主要方法

(1)利用導數研究函數的單調性和極值,通過對極值正負的讨論研究根的問題;

(2)利用數形結合研究方程的根;

(3)利用導數結合零點定理研究根的存在問題;

(4)轉化為不等式或最值問題解決函數零點問題.

熱點考向二導數在不等式中的應用

導數高中數學知識點總結(高中數學導數知識點總結及應用)17

導數高中數學知識點總結(高中數學導數知識點總結及應用)18

導數高中數學知識點總結(高中數學導數知識點總結及應用)19

導數高中數學知識點總結(高中數學導數知識點總結及應用)20

導數高中數學知識點總結(高中數學導數知識點總結及應用)21

[方法規律]

利用導數解決不等式問題的類型

(1)不等式恒成立:基本思路就是轉化為求函數的最值或函數值域的端點值問題.

(2)比較兩個數的大小:一般的思路是把兩個函數作差後構造一個新函數,通過研究這個函數的函數值與零的大小确定所比較的兩個數的大小.

(3)證明不等式:對于隻含有一個變量的不等式都可以通過構造函數,然後利用函數的單調性和極值解決.

--END--

導數高中數學知識點總結(高中數學導數知識點總結及應用)22

導數高中數學知識點總結(高中數學導數知識點總結及應用)23

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
江蘇老四所
江蘇老四所
江蘇,是一個高考大省,也是一個高考強省。2021年聲勢浩大的高考已經結束,成績也已經公布,接下來就是高考志願填報的事宜。江蘇,依靠強大的經濟實力和深厚的文化底蘊,使得江蘇的教育實力也非常強悍,有着很多知名的大學,吸引了大批想來江蘇上大學的高...
2025-04-02
淄博市教育簡訊
淄博市教育簡訊
堅持黨對教育的全面領導奮力推進教育高質量發展淄博市委教育工委常務副書記淄博市教育局黨組書記、局長孫英濤十八大以來,淄博市先後被表彰為全國“兩基”工作先進單位、全國美育工作示範單位,參加省中學生運動會實現“八連冠”,八次奪取全國中小學信息技術...
2025-04-02
論文答辯通關秘籍
論文答辯通關秘籍
大四的我最怕的是,莫過于論文答辯。還沒答辯的胖友們别擔心,讓我總結下答辯實用秘籍。先預祝各位胖友順利畢業!1答辯流程畢業論文答辯流程一般包括自我介紹、答辯人陳述、提問與答辯、總結和緻謝五部分。自我介紹:自我介紹作為答辯的開場白,包括姓名、學...
2025-04-02
初三化學化合物
初三化學化合物
初三化學化合物?之前我們已經介紹了單質的定義隻含有一種元素的純淨物判斷我們身邊的那些物質是不是單質的方法是:先寫出它的化學式符号,再根據化學式符号看它是否隻含有一種元素今天我們繼續來學習化合物,那什麼是化合物呢?我們那麼給它下一個定義呢?像...
2025-04-02
孩子焦慮我們怎麼辦
孩子焦慮我們怎麼辦
孩子焦慮我們怎麼辦?孩子的焦慮與家庭有很大的關系,有沒有想過情緒的傳遞?一個在穩定情緒内生活的孩子和一個在矛盾極端情緒下生活的孩子,哪一個更容易出現心理問題?,我來為大家講解一下關于孩子焦慮我們怎麼辦?跟着小編一起來看一看吧!孩子焦慮我們怎...
2025-04-02
Copyright 2023-2025 - www.tftnews.com All Rights Reserved