首页
/
每日頭條
/
職場
/
python讀取excel數據并繪制圖表
python讀取excel數據并繪制圖表
更新时间:2025-07-12 14:45:51
安裝XlsxWriter模塊:

pip install XlsxWriter

python讀取excel數據并繪制圖表(一日一技:Python使用XlsxWriter模塊在Excel工作表中繪制柱形圖)1

pip install XlsxWriter顯示已經安裝好,所以不用重複安裝

代碼1:繪制簡單的柱形圖。

要在Excel工作表上繪制簡單的柱形圖,請使用add_chart()方法和工作簿對象的“ column”關鍵字參數類型。

上代碼:

# import xlsxwriter module import xlsxwriter # Workbook() takes one, non-optional, argument # which is the filename that we want to create. workbook = xlsxwriter.Workbook('chart_column.xlsx') # The workbook object is then used to add new # worksheet via the add_worksheet() method. worksheet = workbook.add_worksheet() # Create a new Format object to formats cells # in worksheets using add_format() method . # here we create bold format object . bold = workbook.add_format({'bold': 1}) # create a data list . headings = ['Number', 'Batch 1', 'Batch 2'] data = [ [2, 3, 4, 5, 6, 7], [80, 80, 100, 60, 50, 100], [60, 50, 60, 20, 10, 20], ] # Write a row of data starting from 'A1' # with bold format . worksheet.write_row('A1', headings, bold) # Write a column of data starting from # 'A2', 'B2', 'C2' respectively . worksheet.write_column('A2', data[0]) worksheet.write_column('B2', data[1]) worksheet.write_column('C2', data[2]) # Create a chart object that can be added # to a worksheet using add_chart() method. # here we create a column chart object . chart1 = workbook.add_chart({'type': 'column'}) # Add a data series to a chart # using add_series method. # Configure the first series. # = Sheet1 !$A$1 is equivalent to ['Sheet1', 0, 0]. # note : spaces is not inserted in b / w # = and Sheet1, Sheet1 and ! # if space is inserted it throws warning. chart1.add_series({ 'name': '= Sheet1 !$B$1', 'categories': '= Sheet1 !$A$2:$A$7', 'values': '= Sheet1 !$B$2:$B$7', }) # Configure a second series. # Note use of alternative syntax to define ranges. # [sheetname, first_row, first_col, last_row, last_col]. chart1.add_series({ 'name': ['Sheet1', 0, 2], 'categories': ['Sheet1', 1, 0, 6, 0], 'values': ['Sheet1', 1, 2, 6, 2], }) # Add a chart title chart1.set_title ({'name': 'Results of data analysis'}) # Add x-axis label chart1.set_x_axis({'name': 'Test number'}) # Add y-axis label chart1.set_y_axis({'name': 'Data length (mm)'}) # Set an Excel chart style. chart1.set_style(11) # add chart to the worksheet # the top-left corner of a chart # is anchored to cell E2 . worksheet.insert_chart('E2', chart1) # Finally, close the Excel file # via the close() method. workbook.close()


輸出為:

python讀取excel數據并繪制圖表(一日一技:Python使用XlsxWriter模塊在Excel工作表中繪制柱形圖)2


代碼2:繪制堆積柱形圖.

要在Excel工作表上繪制堆積柱形圖,請使用add_chart()方法,其類型為工作簿對象的“ column”和子類型“ stacked”關鍵字參數。

上代碼演示:

# import xlsxwriter module import xlsxwriter # Workbook() takes one, non-optional, argument # which is the filename that we want to create. workbook = xlsxwriter.Workbook('chart_column2.xlsx') # The workbook object is then used to add new # worksheet via the add_worksheet() method. worksheet = workbook.add_worksheet() # Create a new Format object to formats cells # in worksheets using add_format() method . # here we create bold format object . bold = workbook.add_format({'bold': 1}) # create a data list . headings = ['Number', 'Batch 1', 'Batch 2'] data = [ [2, 3, 4, 5, 6, 7], [80, 80, 100, 60, 50, 100], [60, 50, 60, 20, 10, 20], ] # Write a row of data starting from 'A1' # with bold format . worksheet.write_row('A1', headings, bold) # Write a column of data starting from # 'A2', 'B2', 'C2' respectively . worksheet.write_column('A2', data[0]) worksheet.write_column('B2', data[1]) worksheet.write_column('C2', data[2]) # Create a chart object that can be added # to a worksheet using add_chart() method. # here we create a stacked Column chart object . chart1 = workbook.add_chart({'type': 'column', 'subtype': 'stacked'}) # Add a data series to a chart # using add_series method. # Configure the first series. # = Sheet1 !$A$1 is equivalent to ['Sheet1', 0, 0]. chart1.add_series({ 'name': '= Sheet1 !$B$1', 'categories': '= Sheet1 !$A$2:$A$7', 'values': '= Sheet1 !$B$2:$B$7', }) # Configure a second series. # Note use of alternative syntax to define ranges. # [sheetname, first_row, first_col, last_row, last_col]. chart1.add_series({ 'name': ['Sheet1', 0, 2], 'categories': ['Sheet1', 1, 0, 6, 0], 'values': ['Sheet1', 1, 2, 6, 2], }) # Add a chart title chart1.set_title ({'name': 'Results of data analysis'}) # Add x-axis label chart1.set_x_axis({'name': 'Test number'}) # Add y-axis label chart1.set_y_axis({'name': 'Data length (mm)'}) # Set an Excel chart style. chart1.set_style(11) # add chart to the worksheet # the top-left corner of a chart # is anchored to cell E2 . worksheet.insert_chart('E2', chart1) # Finally, close the Excel file # via the close() method. workbook.close()

輸出結果:

python讀取excel數據并繪制圖表(一日一技:Python使用XlsxWriter模塊在Excel工作表中繪制柱形圖)3

代碼3:繪制堆積柱形圖百分比.

若要在Excel工作表上繪制“堆積百分比”圖表,請使用add_chart()方法,其類型為工作簿對象的“列”類型和子類型“ percent_stacked”關鍵字參數。

# import xlsxwriter module import xlsxwriter # Workbook() takes one, non-optional, argument # which is the filename that we want to create. workbook = xlsxwriter.Workbook('chart_column3.xlsx') # The workbook object is then used to add new # worksheet via the add_worksheet() method. worksheet = workbook.add_worksheet() # Create a new Format object to formats cells # in worksheets using add_format() method . # here we create bold format object . bold = workbook.add_format({'bold': 1}) # create a data list . headings = ['Number', 'Batch 1', 'Batch 2'] data = [ [2, 3, 4, 5, 6, 7], [80, 80, 100, 60, 50, 100], [60, 50, 60, 20, 10, 20], ] # Write a row of data starting from 'A1' # with bold format . worksheet.write_row('A1', headings, bold) # Write a column of data starting from # 'A2', 'B2', 'C2' respectively . worksheet.write_column('A2', data[0]) worksheet.write_column('B2', data[1]) worksheet.write_column('C2', data[2]) # Create a chart object that can be added # to a worksheet using add_chart() method. # here we create a percent stacked Column chart object . chart1 = workbook.add_chart({'type': 'column', 'subtype': 'percent_stacked'}) # Add a data series to a chart # using add_series method. # Configure the first series. # = Sheet1 !$A$1 is equivalent to ['Sheet1', 0, 0]. chart1.add_series({ 'name': '= Sheet1 !$B$1', 'categories': '= Sheet1 !$A$2:$A$7', 'values': '= Sheet1 !$B$2:$B$7', }) # Configure a second series. # Note use of alternative syntax to define ranges. # [sheetname, first_row, first_col, last_row, last_col]. chart1.add_series({ 'name': ['Sheet1', 0, 2], 'categories': ['Sheet1', 1, 0, 6, 0], 'values': ['Sheet1', 1, 2, 6, 2], }) # Add a chart title chart1.set_title ({'name': 'Results of data analysis'}) # Add x-axis label chart1.set_x_axis({'name': 'Test number'}) # Add y-axis label chart1.set_y_axis({'name': 'Data length (mm)'}) # Set an Excel chart style. chart1.set_style(11) # add chart to the worksheet # the top-left corner of a chart # is anchored to cell E2 . worksheet.insert_chart('E2', chart1) # Finally, close the Excel file # via the close() method. workbook.close()

輸出結果為:

python讀取excel數據并繪制圖表(一日一技:Python使用XlsxWriter模塊在Excel工作表中繪制柱形圖)4

祝學習愉快!

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
奇迹mu三個職業怎麼搭配
奇迹mu三個職業怎麼搭配
大道五十,天衍四十九。從上古修煉者那裡流傳出來的一句經驗總結,這充分的體現了天道無情和衆生平等的理念。上天有好生之德,凡事留一線,天無絕人之路。在《奇迹MU》裡雖然職業種類少,不過自身有着經典的加點體系,反而是在每個職業的基礎玩法上開發出了...
2025-07-12
機關事業單位基本工資标準2022
機關事業單位基本工資标準2022
事業單位工勤崗位人員一般分為普通工和技術工,普通工相對數量較少,大部分都是技術工。技術工人一般分為五個等級,從技術工一級到技術工五級,從高到低分别對應高級技師、技師、高級工、中級工、初級工,所以高級工也就是技術工三級。工勤人員的工資由基本工...
2025-07-12
楊幂近日活動禮服
楊幂近日活動禮服
有句俗話叫“皇帝不急太監急”,雖然難聽一些,但用來形容楊幂一些粉絲近日抵制楊幂接拍嘉行自制電視劇《許你暖暖的晨光》一事,倒也比較貼切。9月4日中午,楊幂工作室曬出當天楊幂出席某品牌活動的美照,照片中楊幂一襲優雅白裙,露出大長腿和香肩,非常漂...
2025-07-12
黑坑怎麼用顆粒垂釣
黑坑怎麼用顆粒垂釣
如今野釣資源已經越來越少,野生水域中的大魚更是越來越少,于是很多釣魚人開始去黑坑釣魚。黑坑的根本性質是經營與盈利,所以每一個黑坑老闆都想賺錢,因此很多黑坑老闆在經營的時候就會想盡各種辦法來增加自己的利潤,但是也依然有一些有良心的黑坑老闆,他...
2025-07-12
社保轉移常見問答
社保轉移常見問答
社保不轉移,等于白花錢??說到社保,它的惠民福利,是衆所皆知的!所以當大家有計劃換工作時,不管是同城換還是異地換,都會疑惑我之前交的社保怎麼辦呢?可以轉移嗎?怎麼轉?不轉會被清零嗎?網上也有很多關于這些問題的文章,但是大部分都解釋的不夠清楚...
2025-07-12
Copyright 2023-2025 - www.tftnews.com All Rights Reserved