首页
/
每日頭條
/
生活
/
閉區間内連續函數一定有最大值
閉區間内連續函數一定有最大值
更新时间:2025-12-09 07:28:17

工程問題上,研究連續函數的性質是十分重要的。它可以幫我們在一個可以接受的範圍内,給出高次方程的近似解。所以讓我們來研究它吧!我盡量圖解來提高閱讀體驗。

既然都說了是研究閉區間上連續函數的性質,那以下性質一定離不開這兩個條件了:閉區間連續函數

一.最值定理(了解)

内容:若函數F(x)在閉區間[a,b]上連續,則F(x)在[a,b]上一定能取得最大最小值

思考:為什麼要閉區間 和連續函數這兩個條件?

我們分開讨論一下吧!

1.為什麼要非得閉區間這個條件不可?

那好我改成開區間,會怎樣呢?

閉區間内連續函數一定有最大值(圖解閉區間上連續函數的性質)1

M為函數在(a,b)的最大值,b1為最小值

假如是開區間,像如圖這種情況就取不到最小值了!

2.為什麼要非得要連續函數這個條件不可?

我舉個例子你就懂了

閉區間内連續函數一定有最大值(圖解閉區間上連續函數的性質)2

看~像這種在一定區間有間斷點的函數(不連續),就沒最大小值。

二.零點定理(重要)

内容:函數F(x)在閉區間[a,b]上連續,且F(a)*F(b)<0,則至少存在一點δ∈(a,b),使得f(δ)=0。

閉區間内連續函數一定有最大值(圖解閉區間上連續函數的性質)3

為什麼說至少存在一點δ∈(a,b),使得f(δ)=0呢?

畫個圖就很清晰了。

閉區間内連續函數一定有最大值(圖解閉區間上連續函數的性質)4

由圖可以看出它是可以存在多個零點的,所以說它至少存在一點δ∈(a,b),使得f(δ)=0。

應用:二分法求解高次方程的近似解(一個無限逼近正确解的過程)。

5次及5次以上方程沒有根式解(阿貝爾證明過),在工程問題上一般用二分法求解方程的近似解。

三.介值定理(由零點定理基礎上推導而來)

内容:設函數f(x)在閉區間[a,b]上連續,且f(a)不等于f(b),則在f(a)與f(b)之間的任意一個常數C,至少存在一點δ∈(a,b),使得f(δ)=C。

如圖表達:

閉區間内連續函數一定有最大值(圖解閉區間上連續函數的性質)5

為什麼說介值定理是由零點定理基礎上推導而來呢?

我們來利用零點定理一遍:

我們構造一個輔助函數F(x)=f(x)-C

為什麼這麼構造?

我給個圖,直觀感受這個變化:

閉區間内連續函數一定有最大值(圖解閉區間上連續函數的性質)6

左圖為f(x)圖,右圖為F(x)=f(x)-C圖

這就可以把它轉成能用零點定理處理的函數了。

由f(x)在[a,b]上連續,且C在f(a)與f(b)之間,則F(x)在[a,b]上連續,F(a)*F(b)<0

用F(x)=f(x)-C做一下替換就得:[f(a)-c]*[f(b)-c]<0.由零點定理可知,至少存在一點δ∈(a,b),使得F(δ)=0,f(δ)-C=0,即f(δ)=C。

好了,謝謝大家的認真閱讀[笑]

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
壓軸登場原意是指表演中的最後一個節目嗎
壓軸登場原意是指表演中的最後一個節目嗎
壓軸登場原意是指表演中的最後一個節目嗎?壓軸登場原意不是指表演中的最後一個節目,現在小編就來說說關于壓軸登場原意是指表演中的最後一個節目嗎?下面内容希望能幫助到你,我們來一起看看吧!壓軸登場原意是指表演中的最後一個節目嗎壓軸登場原意不是指表...
2025-12-09
下一站江湖怎麼提升修為
下一站江湖怎麼提升修為
下一站江湖怎麼提升修為?做完杭州主線加上之前新手村剛好4人,在百花谷附近,這裡加主可以上五人,很輕忪,在上圖刷無限出,一次800多,先上4個慢慢刷上來再上主角一人,輕輕忪忪,今天小編就來說說關于下一站江湖怎麼提升修為?下面更多詳細答案一起來...
2025-12-09
ntldr丢失怎麼辦
ntldr丢失怎麼辦
ntldr丢失怎麼辦?有可能是因為硬盤信息被篡改了,所以就會導緻系統找不到硬盤中的系統分區,所以就會找不到系統分區中的啟動文件NTLDR了,解決方法是,進入BIOS的“StandardCMOSSetup”中,然後将硬盤的檢測方式設置為“Au...
2025-12-09
文科生和理科生有什麼區别啊?
文科生和理科生有什麼區别啊?
高中階段,學生要面臨一個很重要的選擇:文科還是理科?有些地區采用了新的高考模式,文理劃分不再那麼清晰,但是還有很多地區保留着高中文理分科的形式。文科和理科在學習上面有很大的差别,于是有人說,因為科目學習的差别,所以文科生和理科生也會有區别,...
2025-12-09
肝火旺怎麼補
肝火旺怎麼補
肝火旺怎麼補?對于肝火旺盛,可能很多人并不陌生,這是日常生活中經常會遇到的一種現象肝火旺盛的臨床表現是頭暈、消瘦、煩躁易怒、口苦、目赤等,可見其對人們正常生活影響有多大,如果不加以調理控制,很容易引起肝髒方面的疾病,我來為大家講解一下關于肝...
2025-12-09
Copyright 2023-2025 - www.tftnews.com All Rights Reserved