拉格朗日中值定理在應用中,往往會遇到重複應用的情況。而且在這種情況下又通常與函數的二階導數有關。我們來看這樣的一道例題:
設f為[a,b]上的二階可導函數,f(a)=f(b)=0,并存在一點c∈(a,b),使得f(c)>0,證明:至少存在一點ξ∈(a,b),使f”(ξ)<0.
分析:判斷ξ的二階導數的符号性質,我們往往需要在已知區間上,再找一個子區間,這個子區間的兩個端點,就是一階導數符合拉格朗日中值定理的兩個點。因此又要在已知區間上取一個點,使原區間劃分成兩個區間。這是一個逆向思維的過程。
按順序就是,先在a到b的區間上找一個點,這個點通常是任意取的,因此就取題目中所給的c點,這樣原區間就被分成兩個區間,一個是區間[a,c],一個是區間[c,b],然後分别在這兩個區間上應用拉格朗日中值定理,找到兩個符合拉朗日中值定理的點,記為ξ1和ξ2,那麼區間[ξ1,ξ2]就是[a,b]子區間。在這個子區間上再運用一次拉格朗日中值定理,一共應用了三次拉格朗日中值定理,結合題目中其它量的符号性質,就可以得到題目要求的結果了。前提是拉格朗日中值定理的條件都要滿足。
由于f在閉區間上二階可導,所以原函數和一階導數在這個區間上都連續且可導,因此都符合拉格朗日中值定理。
所以在(a,c)上,可以找到符合拉格朗日中值定理的點ξ1,使得f(c)-f(a)=f’(ξ1)(c-a)。而f(a)=0,所以f(c)-f(a)=f(c)>0,從而f’(ξ1)(c-a)>0..
同理,在(c,b)上,也可以找到一個符合拉格朗日中值定理的點ξ2,使得f(b)-f(c)=f’(ξ2)(b-c),其中f(b)=0,所以f(b)-f(c)=-f(c)<0,所以f’(ξ2)(b-c)<0。
又c-a>0, b-c>0,所以f’(ξ1)>0,f’(ξ2)<0,從而有f’(ξ2)-f’(ξ1)<0。另一方面,ξ2-ξ1>0,這兩個條件是下面要用到的。
再次運用拉格朗日中值定理,可以知道在(ξ1,ξ2)上,存在一個點ξ,使得ξ的導數的導數,即二階導數等于(f’(ξ2)-f’(ξ1))/(ξ2-ξ1)。由分子分母的符号性質,就可以得到f”(ξ)<0的結論。而(ξ1,ξ2)就包含于(a,b)。以下組織證明過程:
證:由拉格朗日中值定理可知:f(c)=f(c)-f(a)=f’(ξ1)(c-a)>0, ξ1∈(a,c),
-f(c)=f(b)-f(c)=f’(ξ2)(b-c)<0,ξ2∈(c,b),
∴f’(ξ1)>0,f’(ξ2)<0,∴f’(ξ2)-f’(ξ1)<0,ξ2-ξ1>0,
再次由拉格朗日中值定理可知:至少存在一點ξ∈(ξ1,ξ2)⊂(a,b),使
f”(ξ)=(f’(ξ2)-f’(ξ1))/(ξ2-ξ1)<0.
拉格朗日中值定理的應用,經常會出現這種題型,一定要掌握好哦。
,