首页
/
每日頭條
/
圖文
/
定積分的原函數問題
定積分的原函數問題
更新时间:2025-09-14 08:51:27

定積分的原函數問題(不定積分原函數)1

跟随輝哥的步伐,走進數學的大門。

今天我們要講的是不定積分的求解方法,希望大家能夠認真學習。

定積分的原函數問題(不定積分原函數)2

一、換元法

1.第一類換元法: 形如∫g(x)dx=∫f[z(x)]z′(x)dx=[∫f(u)du] 其中u=z(x)

例題

定積分的原函數問題(不定積分原函數)3

定積分的原函數問題(不定積分原函數)4

2.第二類換元法(需要令t)

(一)、根号内隻有一次項和常數項的二次根式

方法:将根号整體換元來脫根号

例題:

定積分的原函數問題(不定積分原函數)5

(二)、根号内隻有二次項和常數項的二次根式 (a為常數項) 方法:

定積分的原函數問題(不定積分原函數)6

4.如被積函數中含有 √x²±a²還可試令x=sh t或x=ch t 其中(∫sh xdx=ch x+C ∫ch xdx=sh x+C)

例題①

定積分的原函數問題(不定積分原函數)7

定積分的原函數問題(不定積分原函數)8

定積分的原函數問題(不定積分原函數)9

定積分的原函數問題(不定積分原函數)10

(三)、根式内為一般二次多項式的二次根式。

方法:将根式内配方化為根号内隻有二次項和常數項。

例題:

定積分的原函數問題(不定積分原函數)11

(四)、以下兩種情況:

定積分的原函數問題(不定積分原函數)12

例題⑤

定積分的原函數問題(不定積分原函數)13

例題⑥

定積分的原函數問題(不定積分原函數)14

(五)、如果被積函數為商形式,且分子次數比分母小,可試用倒代換,令x=1/t

例題:

定積分的原函數問題(不定積分原函數)15

二、分部積分法

分部積分公式:∫udv=uv-∫vdu

使用分部積分法的常見類型:

(1)∫ 幂x指數dx 選 指數dx=dv

定積分的原函數問題(不定積分原函數)16

(2)∫ 幂x對數dx 選 幂dx=dv

定積分的原函數問題(不定積分原函數)17

(3)∫ 幂x三角函數dx 選 三角函數dx=dv

(如果sinx cosx遇到二次,半角公式化為一次。如果遇到三次,則先湊微分再用分部積分。secx tanx cotx cscx必須偶次)

定積分的原函數問題(不定積分原函數)18

(4)∫ 幂x反三角函數dx 選 幂dx=dv

定積分的原函數問題(不定積分原函數)19

(5)∫ 指數x三角函數dx (根據情況而定)

定積分的原函數問題(不定積分原函數)20

定積分的原函數問題(不定積分原函數)21

(6)∫secⁿxdx和∫cscⁿxdx(n為偶次時不需要用分部積分法)

定積分的原函數問題(不定積分原函數)22

綜上選擇誰U誰V,看誰求導簡單,誰求導簡單就取為U,反之為V。例如多項式x和三角函數cosx相乘,很明顯對于多項式x更容易求導,因此我們選擇多項式x做為U。

三、有理函數的不定積分

本方法來自華東師範大學數學系編《數學分析·上冊》(第三版),190頁.

定積分的原函數問題(不定積分原函數)23

看幾個例題(知識有限,具體方法下次總結)

定積分的原函數問題(不定積分原函數)24

定積分的原函數問題(不定積分原函數)25

四、三角函數中的積分技巧

1.在計算∫sin²ⁿ⁺¹xdx或∫cos²ⁿ⁺¹xdx時,一般将積分∫sin²ⁿ⁺¹xdx化成-∫(1-cos²)ⁿd(cosx),将積分∫cos²ⁿ⁺¹xdx化成∫(1-sin²)ⁿd(sinx)來進行計算。

2.在計算積分∫sin²ⁿxdx或∫cos²ⁿxdx時,一般利用倍角公式進行降幂計算。

3.在計算積分∫sin(ax)cos(Bx)dx,∫sin(ax)sin(Bx)dx,∫cos(ax)cos(Bx)dx時,一般利用積化和差公式對被積函數進行變形後再計算。

4.形如∫R(sinx,cosx)dx時,一般用萬能代換法,令t=tanx/2。

定積分的原函數問題(不定積分原函數)26

例題

定積分的原函數問題(不定積分原函數)27

5.若有R(cosx,sinx)dx=R(-cosx,-sinx)dx,可令t=tanx;

若有R(-sinx,cosx)dx=-R(-sinx,cosx)dx,可令cosx=t;

若有R(sinx,-cosx)dx=-R(sinx,cosx)dx,可令sinx=t。

例題

定積分的原函數問題(不定積分原函數)28

另外還可以利用積分表來快速的求出一些原函數。

  • 哲學上說矛盾是具有普遍性的,因此我們要具體問題具體分析。求解不定積分的方法并不是拘泥于以上幾種,我們做題時應該從題目本身的條件出發,采取靈活多變的解題方法。

參考文獻(Rreference):

·[1]華東師範大學數學系.數學分析(上冊)[M].北京:高等教育出版社,2001.6

·[2]吉米多維奇等.數學分析習題集[M].北京:高等教育出版社,2010.7

·[3]同濟大學數學系.高等數學(上冊)[M].北京:高等教育出版社,2014.7

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
魔法封印裝備便宜的可以在哪買(魔法上架價格不出所料)
魔法封印裝備便宜的可以在哪買(魔法上架價格不出所料)
  魔法少女将在明日更新,根據先前上架的魔法少女拉克絲的價格。參考可得7900點券。金克絲的受歡迎程度,9900點券也不是那麼的出乎意料。看到這個價格,你還要買嘛?或者想想前面的海克斯商店,有沒有藍瘦,香菇啊?   【“魔法少女”系列新皮膚】      魔法少女金克絲售價9900點券:對于全特效來說,基本是個這價格。最後就省下傳說印記啦。(這個皮膚有個能變成...
2025-09-14
從此江湖再無的詩句(天下獨步的步非非妙境的非)
從此江湖再無的詩句(天下獨步的步非非妙境的非)
     ​   步,非,煙! 天下獨步的步,非非妙境的非,煙華鼎盛的煙。步非煙這樣解釋自己的名字。   有人說步非煙是武俠作家的“超女”,甚至她的讀者自稱“煙絲”。她的走紅是比較快,因為确實是兼具了實力與偶像元素的武俠寫手。實力,因為她是才女;偶像,因為她是美女。      ​   ​   她的作品文字妖娆豔麗,想象精彩奇特,意境恢宏壯闊。使其成名的《武林...
2025-09-14
梁啟超的家風對他的影響(梁啟超家風家教)
梁啟超的家風對他的影響(梁啟超家風家教)
     授權圖片 | 呂志耘 攝   文稿來源:騰訊文化,版權歸原作者所有   梁啟超是個開明的父親,也是一個高明的教育家,他在性情、品格,以及眼界、胸懷等諸多方面都高人一籌。他的家風與家教,也往往是從大處着眼,小處着手。   近些年來,梁啟超的教子之道越來越為人們所關注。一個津津樂道的話題便是,梁氏一門何以能出三個院士,而其他幾個子女也都是各自領域裡十分...
2025-09-14
單身一姐浙江(她公認的一姐)
單身一姐浙江(她公認的一姐)
  中國乒乓球夢之隊,在世界乒壇一直都是神一般的存在,不可逾越,國寶級運動員更是讓他國垂涎三尺,裡約奧運國乒派出女子“三劍客”丁甯、李曉霞、劉詩雯,這樣一個豪華整容,直接劍指總冠軍,毋庸置疑,三人組中女子單打肯定就在她們中産生,最近手感發燙的丁甯成為最大奪冠熱門。這位“女神”大家有多了解?今天小編就帶你走進她的生活。  丁甯原來還是九零後,出生1990年6月...
2025-09-14
錦心似玉譚松韻是自己配音嗎(錦心似玉譚松韻飾演的十一娘怼人功夫實在了得啊)
錦心似玉譚松韻是自己配音嗎(錦心似玉譚松韻飾演的十一娘怼人功夫實在了得啊)
  昨晚由鐘漢良、譚松韻主演的《錦心似玉》開播,在播出的劇集當中,十一娘可稱得上是智慧擔當了,那怼人的功夫實在了得啊!   十一娘ko二娘   二娘為掙得嫁入徐府續弦正室,設計陷害十一娘與王世子的親事,被十一娘拆穿,并狠狠地回敬過去。         十一娘ko喬姨娘      十一娘ko自家相公      三殺!ok!這個怼天怼地地徐府主母可越來越有主母地...
2025-09-14
Copyright 2023-2025 - www.tftnews.com All Rights Reserved