首页
/
每日頭條
/
圖文
/
三角函數任意角知識點
三角函數任意角知識點
更新时间:2026-01-11 06:36:59

三角函數任意角知識點?,下面我們就來聊聊關于三角函數任意角知識點?接下來我們就一起去了解一下吧!

三角函數任意角知識點(如何求任意角三角函數)1

三角函數任意角知識點

三角函數是最基本的初等函數之一,是以角度(數學上常以弧度制為基礎)為自變量,角度對應任意角終邊與單位圓交點坐标為應變量的函數。

所以,我們要想理解三角函數,得從如下幾個角度入手。

①特殊三角形中的三角函數

我們在初中(我之前的文章也有提過)學習過三角函數的入門知識。

如下圖:即三角函數的定義,正限制是什麼?餘弦值又是什麼?正切值又是什麼?

看圖可以知道,正弦sin表示對邊比斜邊,而餘弦cos表示鄰邊比斜邊,正切tan表示對邊鄰邊。

這是最基本的概念,我們不需要知道為什麼?因為數學家就是這樣定義的,接下來我們要用這個概念了解任意角的三角函數。

②任意三角函數,加坐标系,引入單位圓是基礎

了解了三角函數的基本定義是不夠的,因為有的小夥伴發現無法求出sin167°的值。那麼如何才可以求出呢?

細心的朋友會發現,哎,不對啊,我們初中了解的知識不是完整的函數啊,隻是其中的特殊例子,所以無法普遍應用很正常啊!那麼今天我們就來正真了解一下三角函數。

首先,把三角形放入坐标系中,如下圖。接着引入單位圓(單位圓,斜邊為1),我們會發現∠BOC的正弦值就等于B點的縱坐标,而它的餘弦值就是他的橫坐标。于是乎:B(cos∠BOC,sin∠BOC)

③任意角三角函數定義

我們以OX為始邊(X軸正半軸),O為軸心,開始逆時針旋轉,OX與圓交點為C。

我們會發現,當旋轉角度為0°-90°時,就是我們初中接觸過的三角函數,而大于90°小于180°的時候,就成了鈍角的函數了。鈍角的函數怎麼求呢?

我們通過上面結論,知道終邊與圓的交點坐标就是旋轉角度的正弦和餘弦值。而在0°到180°,鈍角的函數值都有銳角與其關于Y軸對稱。而由對稱知識可知,關于y對稱,Y坐标不變,而X坐标互為相反數。即正弦不變,餘弦互為相反數。即sinX=sin(180°-X),cosX=-cos(180°-X),得到這點,我們就可以把任意鈍角轉化為銳角,就可以求出其函數值了。于是有sin167°=sin13°

④兩個特殊例子

根據上面的思維,我們繼續分析。當一個角分别加90°,180°時,結果又會如何呢?

先加90°,我們會發現(看上圖)這是它的終邊交點坐标與之前角度相比有了變化。什麼變化呢?仔細看一下會明白它的縱坐标是原圖的橫坐标,而橫坐标是其縱坐标。于是可得公式:sinx=cos(90°+x)

cosx=sin(90°+x)

再來看180°的圖形(下圖),我們發現加180°之後,兩個交點關于原點O對稱。

又初中對稱知識可知,關于原點對稱的兩點,其橫縱坐标互為相反數。

于是,sinx=-sin(180°+x)

cosx=-cos(180°+x)

⑤弧度制

三角函數是以角度為自變量的,為了方便運算,引入了弧度制。

那麼什麼是弧度制呢?(看下圖)

弧長與半徑的比就是弧的度數,于是180°的弧對應的弧度是π,90°=π/2,60°=π/3

⑥幾個基本的公式

有了上面的基礎,我覺得你看下表就應該可以看明白了吧!學三角函數的時候,老師都會給大家講解公式的推導。有的朋友看一下不懂,就覺得把公式記住就可以了。于是,他就開始記下面的公式,然後經常出錯。上面我給大家講解了一下思路,希望大家按着這個思路把下面公式一個一個自己弄出來,這樣我覺得你的三角函數這塊就沒多大問題了。

⑦思考題

求出下面各函數值

sin135°,cos135°,sin225°,cos225°

歡迎大家評論區留言,我會第一時間回複大家。

我是藍色阿狸,記得關注我哦!

有不明白的地方私聊我!

Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
潘越雲和齊豫誰漂亮(許景淳齊豫師妹)
潘越雲和齊豫誰漂亮(許景淳齊豫師妹)
  台灣著名音樂大師李泰祥共有七大女弟子,其中,齊豫、潘越雲、葉倩文三位為大陸歌迷所熟知,尤其是齊豫、葉倩文兩位更是被廣為提及,另外四位相比這三位,于大陸歌迷而言,名字要陌生得許多,許景淳,就是這四位之一。      圖為許景淳與恩師李泰祥合唱《告别》   許景淳出道于台灣民歌時代的末期,23歲的她已是台灣音樂大師李泰祥的弟子。許景淳的父親許丕龍為旅美知名人...
2026-01-11
steam求生之路2能氪金嗎(利益與良知的艱難選擇)
steam求生之路2能氪金嗎(利益與良知的艱難選擇)
  不知道大家還記不記得冒險解謎獨立遊戲《旁觀者》?反烏托邦題材的解謎遊戲,加上無處不在的監視與道德抉擇,選擇當好人自己就要死,當壞人卻又良心上過不去,玩過的小夥伴估計都非常印象深刻。這款備受好評的《旁觀者》官方微博宣布,《旁觀者2(Beholder 2)》的制作已經全面展開,并且遊戲已經在Steam上架,預計2018年發售,移動端也有可能跟上哦~     ...
2026-01-11
正月18出門有哪些講究(正月十九到了老傳統)
正月18出門有哪些講究(正月十九到了老傳統)
  #頭條創作挑戰賽#   正月十九,年封口!“2迎2忌”要記住,寓意順順利利,吉祥如意。   老話說:“正月十九,年封口”。明天就是正月十九封口日了,什麼是“年封口”呢?很好理解,到了明天,預示着春節正式結束了,要走上正軌道路,不能還沉迷于過年當中,也就是徹底封口了。你知道嗎?這天還有老傳統“2迎2忌”,寓意順順利利好運來!      一迎:聖母娘娘這是流...
2026-01-11
泡面創始人吳百福的勵志故事(34方便面之父)
泡面創始人吳百福的勵志故事(34方便面之父)
  衆所周知方便面是風靡全球的一種既美味又快捷的速食食品,這種方便食品的發明造福了忙碌的上班族和奔波的旅客們。輕便易攜的重量和僅需要熱水就可以加工的簡單操作,讓這些行色匆匆的人在緊張的工作和疲憊的旅行過程中,能夠吃上一口熱乎的湯面。   享受着方便面帶來的一切便利時,我們都要感謝它的發明者:方便面之父安藤百福。從發明者的名字看來,這是一個日本名字,事實上方便...
2026-01-11
索尼psvita能玩什麼遊戲(索尼PSVita終告破解可惜來晚了)
索尼psvita能玩什麼遊戲(索尼PSVita終告破解可惜來晚了)
  據日本媒體報道,索尼PS Vita在5年前正式上市,由于使用了封閉的聯網操作系統和專用的存儲卡,一直以來都是破解方面的老大難。而現在,PS Vita的系統和存儲卡已經被徹底破解。哎!這一等就是五年。      索尼PS Vita終告破解(圖片來自cnbeta)   在前,雖有暫時性的破解方法,使其可以運行PSP遊戲和自制軟件,但每次都是在系統升級後失效。...
2026-01-11
Copyright 2023-2026 - www.tftnews.com All Rights Reserved