首页
/
每日頭條
/
圖文
/
三角函數任意角知識點
三角函數任意角知識點
更新时间:2025-04-03 19:26:29

三角函數任意角知識點?,下面我們就來聊聊關于三角函數任意角知識點?接下來我們就一起去了解一下吧!

三角函數任意角知識點(如何求任意角三角函數)1

三角函數任意角知識點

三角函數是最基本的初等函數之一,是以角度(數學上常以弧度制為基礎)為自變量,角度對應任意角終邊與單位圓交點坐标為應變量的函數。

所以,我們要想理解三角函數,得從如下幾個角度入手。

①特殊三角形中的三角函數

我們在初中(我之前的文章也有提過)學習過三角函數的入門知識。

如下圖:即三角函數的定義,正限制是什麼?餘弦值又是什麼?正切值又是什麼?

看圖可以知道,正弦sin表示對邊比斜邊,而餘弦cos表示鄰邊比斜邊,正切tan表示對邊鄰邊。

這是最基本的概念,我們不需要知道為什麼?因為數學家就是這樣定義的,接下來我們要用這個概念了解任意角的三角函數。

②任意三角函數,加坐标系,引入單位圓是基礎

了解了三角函數的基本定義是不夠的,因為有的小夥伴發現無法求出sin167°的值。那麼如何才可以求出呢?

細心的朋友會發現,哎,不對啊,我們初中了解的知識不是完整的函數啊,隻是其中的特殊例子,所以無法普遍應用很正常啊!那麼今天我們就來正真了解一下三角函數。

首先,把三角形放入坐标系中,如下圖。接着引入單位圓(單位圓,斜邊為1),我們會發現∠BOC的正弦值就等于B點的縱坐标,而它的餘弦值就是他的橫坐标。于是乎:B(cos∠BOC,sin∠BOC)

③任意角三角函數定義

我們以OX為始邊(X軸正半軸),O為軸心,開始逆時針旋轉,OX與圓交點為C。

我們會發現,當旋轉角度為0°-90°時,就是我們初中接觸過的三角函數,而大于90°小于180°的時候,就成了鈍角的函數了。鈍角的函數怎麼求呢?

我們通過上面結論,知道終邊與圓的交點坐标就是旋轉角度的正弦和餘弦值。而在0°到180°,鈍角的函數值都有銳角與其關于Y軸對稱。而由對稱知識可知,關于y對稱,Y坐标不變,而X坐标互為相反數。即正弦不變,餘弦互為相反數。即sinX=sin(180°-X),cosX=-cos(180°-X),得到這點,我們就可以把任意鈍角轉化為銳角,就可以求出其函數值了。于是有sin167°=sin13°

④兩個特殊例子

根據上面的思維,我們繼續分析。當一個角分别加90°,180°時,結果又會如何呢?

先加90°,我們會發現(看上圖)這是它的終邊交點坐标與之前角度相比有了變化。什麼變化呢?仔細看一下會明白它的縱坐标是原圖的橫坐标,而橫坐标是其縱坐标。于是可得公式:sinx=cos(90°+x)

cosx=sin(90°+x)

再來看180°的圖形(下圖),我們發現加180°之後,兩個交點關于原點O對稱。

又初中對稱知識可知,關于原點對稱的兩點,其橫縱坐标互為相反數。

于是,sinx=-sin(180°+x)

cosx=-cos(180°+x)

⑤弧度制

三角函數是以角度為自變量的,為了方便運算,引入了弧度制。

那麼什麼是弧度制呢?(看下圖)

弧長與半徑的比就是弧的度數,于是180°的弧對應的弧度是π,90°=π/2,60°=π/3

⑥幾個基本的公式

有了上面的基礎,我覺得你看下表就應該可以看明白了吧!學三角函數的時候,老師都會給大家講解公式的推導。有的朋友看一下不懂,就覺得把公式記住就可以了。于是,他就開始記下面的公式,然後經常出錯。上面我給大家講解了一下思路,希望大家按着這個思路把下面公式一個一個自己弄出來,這樣我覺得你的三角函數這塊就沒多大問題了。

⑦思考題

求出下面各函數值

sin135°,cos135°,sin225°,cos225°

歡迎大家評論區留言,我會第一時間回複大家。

我是藍色阿狸,記得關注我哦!

有不明白的地方私聊我!

Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
狂飙老默扮演者發抖音告别翠玉軒(對話狂飙老默馮兵)
狂飙老默扮演者發抖音告别翠玉軒(對話狂飙老默馮兵)
  來源:【海報新聞】   大衆網·海報新聞記者 李子驕 張海振 報道   觀衆真正看到演員馮兵,是從《狂飙》開始。在劇中,他飾演人狠話不多的陳金默(老默),一位冷血的“棒棒糖殺手”,也是一位疼愛女兒的父親。他的一個“眼神殺”,幾乎一秒之内,就讓觀衆入戲。   馮兵出生在山東淄博,畢業于北京電影學院,并且還是一名有着十六年軍齡的退役軍人,軍旅經曆造就了他身上...
2025-04-03
老九門張藝興和誰演夫妻(老九門演張藝興妻子)
老九門張藝興和誰演夫妻(老九門演張藝興妻子)
  每次小說改編電視劇,都會讓一波書粉難以忍受。在現在改編的所以作品中,小編最喜歡的就是《鎮魂》和《琅琊榜》了,可以說和原著一樣精彩,難分高下。《聽雪樓》也是一部經典作品,改編成電視劇後,袁冰妍飾演 了女主舒靖容,和秦俊傑飾演的蕭憶情開始進入觀衆的視野。但是二人卻将一部虐心的熱血劇演成了腦殘的偶像劇,真的讓人不忍直視。袁冰妍沒有展現出原著中女主的氣勢,顔值清...
2025-04-03
mba培訓班哪個好(mba培訓班哪個好)
mba培訓班哪個好(mba培訓班哪個好)
  作為含金量較高、對大家職業發展有一定影響的MBA/EMBA考試,不少考生都會出現考前"抱佛腳":"時間都去哪裡了"的感歎。   MBA聯考不同于其它研究生的考試,MBA/EMBA碩士的培養目标與其它技術專業有所不同,因此,在備考方向和考試内容、報考條件,也會有一定的區别。   對于很多已經參加工作的MBA考生,大家每天的學習時間有限或者基礎不一,因此,在...
2025-04-03
查一下血糖儀的正确使用方法(血糖儀測值不準)
查一下血糖儀的正确使用方法(血糖儀測值不準)
  在糖尿病控制過程中,血糖監測可以用來判斷血糖控制情況,還可以指導治療。但在現實生活中,很多朋友對如何在家裡自我監測血糖感到困惑。那麼在家如何測量血糖呢?操作過程中存在哪些問題?今天,我們來詳細說說測血糖的方法。      一、如何選擇家用血糖儀   我們如何選擇一種方便實用的工具,來應對市場上各種血糖儀的推銷導緻的選擇困難?   1.看精度   首先,我...
2025-04-03
思念到極緻的詩詞(七絕情癡)
思念到極緻的詩詞(七絕情癡)
  卧醉青山兩相知,   夏蟬井蛙亂山姿。   相思研磨賦詩吟,   道盡世間悲與癡。               ,
2025-04-03
Copyright 2023-2025 - www.tftnews.com All Rights Reserved