首页
/
每日頭條
/
圖文
/
三角函數任意角知識點
三角函數任意角知識點
更新时间:2026-01-12 10:09:46

三角函數任意角知識點?,下面我們就來聊聊關于三角函數任意角知識點?接下來我們就一起去了解一下吧!

三角函數任意角知識點(如何求任意角三角函數)1

三角函數任意角知識點

三角函數是最基本的初等函數之一,是以角度(數學上常以弧度制為基礎)為自變量,角度對應任意角終邊與單位圓交點坐标為應變量的函數。

所以,我們要想理解三角函數,得從如下幾個角度入手。

①特殊三角形中的三角函數

我們在初中(我之前的文章也有提過)學習過三角函數的入門知識。

如下圖:即三角函數的定義,正限制是什麼?餘弦值又是什麼?正切值又是什麼?

看圖可以知道,正弦sin表示對邊比斜邊,而餘弦cos表示鄰邊比斜邊,正切tan表示對邊鄰邊。

這是最基本的概念,我們不需要知道為什麼?因為數學家就是這樣定義的,接下來我們要用這個概念了解任意角的三角函數。

②任意三角函數,加坐标系,引入單位圓是基礎

了解了三角函數的基本定義是不夠的,因為有的小夥伴發現無法求出sin167°的值。那麼如何才可以求出呢?

細心的朋友會發現,哎,不對啊,我們初中了解的知識不是完整的函數啊,隻是其中的特殊例子,所以無法普遍應用很正常啊!那麼今天我們就來正真了解一下三角函數。

首先,把三角形放入坐标系中,如下圖。接着引入單位圓(單位圓,斜邊為1),我們會發現∠BOC的正弦值就等于B點的縱坐标,而它的餘弦值就是他的橫坐标。于是乎:B(cos∠BOC,sin∠BOC)

③任意角三角函數定義

我們以OX為始邊(X軸正半軸),O為軸心,開始逆時針旋轉,OX與圓交點為C。

我們會發現,當旋轉角度為0°-90°時,就是我們初中接觸過的三角函數,而大于90°小于180°的時候,就成了鈍角的函數了。鈍角的函數怎麼求呢?

我們通過上面結論,知道終邊與圓的交點坐标就是旋轉角度的正弦和餘弦值。而在0°到180°,鈍角的函數值都有銳角與其關于Y軸對稱。而由對稱知識可知,關于y對稱,Y坐标不變,而X坐标互為相反數。即正弦不變,餘弦互為相反數。即sinX=sin(180°-X),cosX=-cos(180°-X),得到這點,我們就可以把任意鈍角轉化為銳角,就可以求出其函數值了。于是有sin167°=sin13°

④兩個特殊例子

根據上面的思維,我們繼續分析。當一個角分别加90°,180°時,結果又會如何呢?

先加90°,我們會發現(看上圖)這是它的終邊交點坐标與之前角度相比有了變化。什麼變化呢?仔細看一下會明白它的縱坐标是原圖的橫坐标,而橫坐标是其縱坐标。于是可得公式:sinx=cos(90°+x)

cosx=sin(90°+x)

再來看180°的圖形(下圖),我們發現加180°之後,兩個交點關于原點O對稱。

又初中對稱知識可知,關于原點對稱的兩點,其橫縱坐标互為相反數。

于是,sinx=-sin(180°+x)

cosx=-cos(180°+x)

⑤弧度制

三角函數是以角度為自變量的,為了方便運算,引入了弧度制。

那麼什麼是弧度制呢?(看下圖)

弧長與半徑的比就是弧的度數,于是180°的弧對應的弧度是π,90°=π/2,60°=π/3

⑥幾個基本的公式

有了上面的基礎,我覺得你看下表就應該可以看明白了吧!學三角函數的時候,老師都會給大家講解公式的推導。有的朋友看一下不懂,就覺得把公式記住就可以了。于是,他就開始記下面的公式,然後經常出錯。上面我給大家講解了一下思路,希望大家按着這個思路把下面公式一個一個自己弄出來,這樣我覺得你的三角函數這塊就沒多大問題了。

⑦思考題

求出下面各函數值

sin135°,cos135°,sin225°,cos225°

歡迎大家評論區留言,我會第一時間回複大家。

我是藍色阿狸,記得關注我哦!

有不明白的地方私聊我!

Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
曆史上洛陽地區下轄多少縣(1952年河南洛陽下轄11個縣)
曆史上洛陽地區下轄多少縣(1952年河南洛陽下轄11個縣)
  河南洛陽是我國的四大古都之一,建都時間算的話是我國的第一大古都,長期是河南府的駐地。其實河南省名稱的确定就是舊來自于洛陽河南府,不過奇怪的是洛陽從來沒有做過河南省的省會,可能跟地理位置有關系,實在太偏西了。發展到如今洛陽僅下轄7個縣,不過仍然是中西部地區非省會地級市 GDP第1名,而在1952年河南洛陽下轄11個縣,廣大的豫西地區都是洛陽專區管轄,曾經鼎...
2026-01-12
六級寫作高級替換詞彙(四六級寫作必背)
六級寫作高級替換詞彙(四六級寫作必背)
  各位備考四六級的童鞋們,2016年6月的四六級考試馬上就要到來了,你們的寫作都準備得如何呢?是否還是在練習寫作和翻譯時,一想寫“喜歡”就用“like”? 一想到“重要”就要寫“important”呢?快來看看小編為大家準備的以下寫作常用詞語高級替換吧!建議大家做好筆記,反複不斷地背誦,才能在考試中用起來哦!      重要的   (important) ...
2026-01-12
金龜子講的睡前小故事(金龜子講睡前故事)
金龜子講的睡前小故事(金龜子講睡前故事)
        呼噜豬,真好笑,每天早上都要睡懶覺。   叮鈴鈴,鬧鐘響,呼噜豬翻了個身又睡過去了。媽媽一遍一遍地喊,爸爸一次一次地叫,呼噜豬蒙上被子都沒有聽到。   當鬧鈴又響了一次時,呼噜豬突然從床上起來,糟糕糟糕,今天可千萬别遲到啊。   呼噜豬沒洗臉,沒刷牙,左腳的鞋子還穿在了右腳上,慌慌張張地收拾書包,呼噜豬都快要急死了。   豬爸爸看着呼噜豬匆忙...
2026-01-12
最年輕起兵稱帝的是誰(4位對手中有個曾4度稱帝)
最年輕起兵稱帝的是誰(4位對手中有個曾4度稱帝)
  第36屆香港電影金像獎頒獎典禮将于2017年4月9日晚舉行,此前,香港金像獎對外公布了提名名單,對于今年的提名,阿歪是沒感到多少意外的,畢竟現在稱得上是香港電影的影片也沒多少,在這裡面能當參賽的作品也就更少了,所以阿歪在看電影的時候基本上就能猜到這部片能不能被提名最佳影片,這個主角能不能被提名最佳男主。不過,意料之外的事還是有的,《七月與安生》這部影片雖...
2026-01-12
俄碧有黑點的值不值得買(實戰經驗您真的了解所有俄碧的礦嗎)
俄碧有黑點的值不值得買(實戰經驗您真的了解所有俄碧的礦嗎)
  市場碧玉的出産地非常多,例如新疆和田、俄羅斯、巴基斯坦、加拿大、新西蘭、澳大利亞、迪拜、瑪納斯等。其中占據市場主流當屬俄羅斯碧玉,那麼,您真的分清楚俄羅斯碧玉每一種綠原料的礦口嗎?   接下來,聯盟将與大家分享相關知識:   7号礦碧玉   首先咱們先從老料子,也就是7号礦開始。7号礦,大家應該都不陌生吧。在俄羅斯碧玉當中,有1-32号礦,其中7号礦是最...
2026-01-12
Copyright 2023-2026 - www.tftnews.com All Rights Reserved