首页
/
每日頭條
/
圖文
/
學因式分解需要先學哪些基礎
學因式分解需要先學哪些基礎
更新时间:2026-01-31 06:31:07

因式分解是初中數學的一個重點,也是不少學生眼中的一個難點。一般難在兩個地方:一是不知如何下手;二是分解不徹底等失誤。

其實因式分解并不可怕,首先需要明确1個基本方向,即因式分解是要幹什麼?

因式分解實際上類似于你小學時學的分解質因數,比如30=2×3×5.因式分解最終就是要把原式分解成多個因式相乘的形式,即()()()……這裡每個括号表示一個因式,括号内都要化到最簡。因式可以是多項式,也可以是單項式,包括單獨的數字或字母。

學因式分解需要先學哪些基礎(學因式分解頭疼)1

快樂的亞洲小學女生

因式分解實際上是整式乘法的一個逆運算。就像30=2×3×5是2×3×5=30(整數乘法)的逆運算一樣。所以在你做分解擔心某一步出現失誤時,可以把你的分解結果展開看一看是不是與上面的式子相同。


解決了因式分解要幹什麼的問題,接下來就是怎麼做。我們能通過哪些辦法從一個整式裡分解出因式呢?

有這麼三個基本步驟:分組分解、提取公因式、公式/十字交叉法。

當然,這三個步驟不是在任何一道題裡都要同時使用的。

學因式分解需要先學哪些基礎(學因式分解頭疼)2

一個女孩在粉筆闆前學習數學問題a girl studying in front of a chalk

分組分解:

分組分解一般是适用于題目給出的式子項數>3的情況,常見的是4項、5項或6項,3項以内通常就不用分組了。

通常是把這些項分成2組。

對于4項的式子,一般分成1項 3項的兩組,或2項 2項兩組;

5項的話,通常是2項 3項的兩組;

6項的話,比較常見的分成3項 3項的兩組。

分組分解是為了分完組後接下來能進行後面兩個步驟。

提取公因式:

提取公因式是最好操作的步驟,也是拿到任何一個因式分解題首先要考慮的步驟。

實際上不管給出幾項的式子,首先都要看看有沒有公因式能提出來。

不過通常對于項數>3的式子,需要先分組分解後才有可能提取公因式。

公式/十字交叉法

這一步是因式分解裡的關鍵步驟,也是難點。需要掌握2個公式和一種類似于公式的方法(十字交叉法)。

其實因式分解能夠運用的公式當然不止2個,但在考試範圍内隻需要掌握平方差公式完全平方公式就足夠了。

平方差公式:a^2 - b^2 = (a b)(a-b).

完全平方公式:a^2 ± 2ab b^2 = (a±b)^2.

我們會發現,其實從公式右邊做整式乘法運算,就能得到公式左邊。要特别注意公式裡的符号。

這兩個公式一個是2項,一個3項,所以運用起來區分是比較明顯的。2項、平方相減就要考慮平方差,3項就先考慮完全平方。


十字交叉法則是完全平方公式的一個升級。(完全平方公式可以看成十字交叉法的一個特殊情況)

這種方法的原理是根據(ax by)(cx dy) = acx^2 (ad bc)xy bdy^2這個乘法做逆運算。

acx^2 (ad bc)xy bdy^2 =(ax by)(cx dy).

之所以要做十字交叉,是為了簡便地從ac、bd、ad bc這三個系數裡找出相應的a、b、c、d四個數。

看着太複雜對嗎?如果在上面的式子裡令y=1,就得到了隻含一個未知數的十字交叉應用:

acx^2 (ad bc)x bd =(ax b)(cx d).

如果再令a=c=1,那就是十字交叉法最簡單的應用:

x^2 (d b)x bd =(x b)(x d).


掌握了這三個步驟并加以綜合運用,因式分解題就不用怕啦。

學因式分解需要先學哪些基礎(學因式分解頭疼)3

最簡單的一些問題,用一步提取公因式就分解完成;複雜一些的,提取公因式之後可以再用公式/十字交叉法。項數更多的,需要先分組,再用提取公因式或公式/十字交叉法。

分解方法會了,為了提高做題時的正确率,下面再總結一下最容易失誤的兩個方面。

最容易犯的一個失誤就是分解不徹底

要保證分解徹底,就要在分解的每一步都重新審視當前的式子,化簡每個括号裡的因式,看看能否再用提取公因式或式/十字交叉法繼續進行分解,直到每個括号裡的因式都分無可分。

舉例來說,最容易分解不徹底的是a^4-b^4這種,按平方差分解出的a^2-b^2又可以繼續用平方差分解;或者(a^2 b^2)^2-(2ab)^2這種,按平方差分解出的a^2±2ab b^2又可以繼續用完全平方分解。

另一個最容易出現的失誤是在提取公因式時的運算失誤。要注意2點,一是對于提出一個帶負号的公因式,提出後每一項都要相應變符号(這相當于去括号運算的逆運算);二是式子裡的某一項就是整個式子的公因式,那提出來之後不要漏掉這一項變成的1.

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
畫江湖之不良人完整(李硯畫江湖之不良人正在熱播)
畫江湖之不良人完整(李硯畫江湖之不良人正在熱播)
     近日,改編自 國漫 IP 《 畫江湖之不良人 》,由 童輝、王豐 執導, 李硯、曹賽亞、陳添祥、何依蔓、于雷等主演,正在芒果 tv 全網獨播。 該劇自開播以來 備受關注,角色話題熱議不斷。這也是李硯繼上一部院線作品《天之書》之後的又一新作,也是他少有的古裝角色之一。      李硯在《畫江湖之不良人》中飾演的男主李星雲是一名神秘的孤兒,機緣巧合下被...
2026-01-31
南甯濕地公園考拉河(南甯那考河濕地公園)
南甯濕地公園考拉河(南甯那考河濕地公園)
  今天我們來介紹一個鹹魚是如何翻身的。那考河,原本是一條臭水溝,也沒有什麼人關注,畢竟哪裡都不缺臭水溝。一個臭水溝都是讓人避而不及的。但是突然有一天……它一改過去的容貌,變成了如今的濕地公園。   公園據說總投資超過11個億,使用了各種技術用來淨化水體。如今的那考河早已不是過去的臭水溝了,兩岸有梯田式遞進的淨水植物帶。還種植的大片的花田。      公園是...
2026-01-31
家庭應該準備多少現金流(我該如何獲得自由)
家庭應該準備多少現金流(我該如何獲得自由)
     人人都有故事   這是有故事的人發表的第1139個作品   作者:小土豆也能發芽   配圖:網絡(除注明外)   一2018年11月末,我被家裡趕出來,開始了一個人租房的日子。房子租在單位對面,每天上下班隻需要步行幾百米。日子過得不錯,每天笑呵呵的。但快樂隻持續到今年年初,我媽給我打電話,說家裡的珍珠鳥死了。   我家有三隻珍珠鳥,剛開始我隻養了一...
2026-01-31
數學活動好吃的水果教案(愛吃的水果教學設計)
數學活動好吃的水果教案(愛吃的水果教學設計)
  教師資格面試考試難度越來越大,其中一方面的難度就體現在課型的增多。小學語文除了閱讀課,還會考查識字寫字課、拼音教學課和口語交際課。其中口語交際作為日常教學中不太常見的課型,難度更大一些,今天中公教師考試研究院以一篇《愛吃的水果》為例,提供了較為詳細的教學設計,看看口語交際教學該如何教。   一、教學目标   1.抓住水果的特點,條理清晰,生動準确地描述水...
2026-01-31
邁克爾傑克遜為什麼至今無人超越(流行天王邁克爾傑克遜為什麼仍讓世人如此懷念)
邁克爾傑克遜為什麼至今無人超越(流行天王邁克爾傑克遜為什麼仍讓世人如此懷念)
  邁克爾傑克遜(MJ)離開我們已經十年了,但這十年裡,他與我們的距離,卻又似乎顯得越來越近了。   這十年裡,全世界對MJ的懷念與緻敬從未停止。各種太空步模仿秀、歌曲翻唱,各種追憶紀錄片、還有各種關于MJ身後事的追蹤,從當年猥亵男孩承認說謊、私人醫生謀殺、到MJ去世後依舊不斷打破着自己的專輯銷量記錄以及遺産争奪版權争議等新聞報道。      今天,在MJ作...
2026-01-31
Copyright 2023-2026 - www.tftnews.com All Rights Reserved