首页
/
每日頭條
/
生活
/
各個方向的梯度變化公式
各個方向的梯度變化公式
更新时间:2025-11-07 19:33:41
導數

導數的幾何意義可能很多人都比較熟悉: 當函數定義域和取值都在實數域中的時候,導數可以表示函數曲線上的切線斜率。 除了切線的斜率,導數還表示函數在該點的變化率。

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)1

将上面的公式轉化為下面圖像為:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)2

直白的來說,導數代表了在自變量變化趨于無窮小的時候,函數值的變化與自變量變化的比值代表了導數,幾何意義有該點的切線。物理意義有該時刻的(瞬時)變化率...

注意在一元函數中,隻有一個自變量變動,也就是說隻存在一個方向的變化率,這也就是為什麼一元函數沒有偏導數的原因。

偏導數

既然談到偏導數,那就至少涉及到兩個自變量,以兩個自變量為例,z=f(x,y) . 從導數到偏導數,也就是從曲線來到了曲面. 曲線上的一點,其切線隻有一條。但是曲面的一點,切線有無數條。

而我們所說的偏導數就是指的是多元函數沿坐标軸的變化率.

fx'(x,y)指的是函數在y方向不變,函數值沿着x軸方向的變化率。

fy'(x,y)指的是函數在x方向不變,函數值沿着y軸方向的變化率。

對應的圖像形象表達如下:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)3

那麼偏導數對應的幾何意義是是什麼呢?

  • fx'(x,y)偏導數就是曲面被平面所截得的曲面在點處的切線對x軸的斜率。
  • fy'(x,y)偏導數就是曲面被平面所截得的曲面在點處的切線對y軸的斜率。

可能到這裡,讀者就已經發現偏導數的局限性了,原來我們學到的偏導數指的是多元函數沿坐标軸的變化率,但是我們往往很多時候要考慮多元函數沿任意方向的變化率,那麼就引出了方向導數。

方向導數

終于引出我們的重頭戲了,方向導數,下面我們慢慢來走進它

假設你站在山坡上,相知道山坡的坡度(傾斜度)

山坡圖如下:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)4

假設山坡表示為z=f(x,y),你應該已經會做主要倆個方向的斜率.

y方向的斜率可以對y偏微分得到.

同樣的,x方向的斜率也可以對x偏微分得到

那麼我們可以使用這倆個偏微分來求出任何方向的斜率(類似于一個平面的所有向量可以用倆個基向量來表示一樣)。

現在我們有這個需求,想求出u方向的斜率怎麼辦.假設z=f(x,y)為一個曲面,p(xo,yo)為定義域f中一個點,單位向量u=cosθi sinθj的斜率,其中θ是此向量與x軸正向夾角.單位向量u可以表示對任何方向導數的方向.如下圖:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)5

那麼我們來考慮如何求出u方向的斜率,可以類比于前面導數定義,得出如下:

設f(x,y)為一個二元函數,u=cosθi sinθj為一個單位向量,如果下列的極限值存在

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)6

此方向導數記為Duf

則稱這個極限值f是沿着u方向的方向導數,那麼随着θ的不同,我們可以求出任意方向的方向導數.這也表明了方向導數的用處,是為了給我們考慮函數對任意方向的變化率.

在求方向導數的時候,除了用上面的定義法求之外,我們還可以用偏微分來簡化我們的計算.

表達式是:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)7

(至于為什麼成立,很多資料有,不是這裡讨論的重點)

那麼一個平面上無數個方向,函數沿哪個方向變化率最大呢?

目前我不管梯度的事,我先把表達式寫出來:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)8

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)9

那麼我們可以得到:

各個方向的梯度變化公式(為什麼梯度反方向是函數值下降最快的方向)10

(α為向量與向量之間的夾角)

那麼此時如果Duf(x,y)要取得最大值,也就是當α為0度的時候,也就是向量I(這個方向是一直在變,在尋找一個函數變化最快的方向)與向量A(這個方向當點固定下來的時候,它就是固定的)平行的時候,方向導數最大.方向導數最大,也就是單位步伐,函數值朝這個反向變化最快.

好了,現在我們已經找到函數值下降最快的方向了,這個方向就是和向量相同的方向.那麼此時我把A向量命名為梯度(當一個點确定後,梯度方向是确定的),也就是說明了為什麼梯度方向是函數變化率最大的方向了!!!(因為本來就是把這個函數變化最大的方向命名為梯度)

我的理解是,本來梯度就不是橫空出世的,當我們有了這個需求(要求一個方向,此方向函數值變化最大),得到了一個方向,然後這個方向有了意義,我們給了它一個名稱,叫做梯度。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
女司機撞人拒不認罪
女司機撞人拒不認罪
網傳視頻截圖前不久,沈陽一女子駕車撞人後稱對方碰瓷,頂着人強行駕車離開。當民警上前執法時,該女子氣焰嚣張、百般抗拒,并企圖以“我爸是XXX”來“震懾”執法者。不承想,執法民警根本不吃這一套,霸氣回怼:“愛誰誰!”最終,在抗拒過程中咬傷警察的...
2025-11-07
發酵床養鵝怎麼做
發酵床養鵝怎麼做
發酵床養鵝怎麼做?準備墊料,養鵝養雞用的發酵床墊料要保持在20cm左右厚度就可以了,150平米發酵床大概需要50方的鋸末,10方粉碎後的稭稈或麥麸,我來為大家科普一下關于發酵床養鵝怎麼做?以下内容希望對你有幫助!發酵床養鵝怎麼做準備墊料,養...
2025-11-07
榮耀linux沒有自帶浏覽器
榮耀linux沒有自帶浏覽器
榮耀linux沒有自帶浏覽器?有的火狐浏覽器榮耀(HONOR),是面向年輕人群的科技潮牌,主打潮流設計和極緻性能榮耀不斷推出不同系列産品,緻力于打造手機+IoT産品生态圈榮耀的使命,是創造一個屬于年輕人的智慧新世界榮耀将持續為全球年輕人提供...
2025-11-07
痛風患者能吃蘑菇木耳嗎
痛風患者能吃蘑菇木耳嗎
對于痛風患者來說,一般痛風急性發作期,要求盡量不要食用高嘌呤的食物,如果是在痛風間歇期,或者沒有痛風,隻是高尿酸的朋友,一般說來,除了對于一些食用後有很大可能會引起痛風的食物以外,沒有什麼食物是絕對不能吃的,當然,不管什麼食物,适量都很重要...
2025-11-07
無任何添加酸奶蛋糕的做法
無任何添加酸奶蛋糕的做法
今天帶來懶人蛋糕的做法,整個過程不加一滴水,不加一滴油,還不用烤制,也省去了打發蛋清的步驟。做出來的蛋糕酸奶香味特别濃郁,好吃不上火。一起來看看這道酸奶蛋糕是怎麼做的吧!By雪山草原廚娘用料酸奶200ml雞蛋蔓越莓10g2個糖10g低筋面粉...
2025-11-07
Copyright 2023-2025 - www.tftnews.com All Rights Reserved