首页
/
每日頭條
/
生活
/
等腰直角三角形的八大題型
等腰直角三角形的八大題型
更新时间:2025-12-29 19:06:26

等腰直角三角形是一種特殊的三角形。具有兩直角邊相等,兩銳角相等,斜邊中線角平分級垂線三線合一等性質。今天我們就利用它的性質來解一道題。

如圖,在RtΔABC中,∠ACB=90°,AC=BC,點E是邊AC上一點,點D是BE延長線上一點,過點A作AF⊥BD于點F,連接CD,CF,當AF=DF時,求證:DC=BC。

我們一起來分析一下這道題。

等腰直角三角形的八大題型(活用等腰直角三角形的性質解題)1

從圖中我們可以看到,因為RtΔABC是等腰直角三角形,要證明DC=BC,隻需證明DC=AC就可以了。

而在ΔCFD和ΔCFA中,AF=DF,CF=CF,如果能證明∠AFC=∠DFC,就可證明兩個三角形全等,DC=AC。

而∠AFC=∠AFE ∠CFE,AF⊥BD,∠AFE=∠AFD=90°,隻需證明∠EFC=45°,就可以得到∠AFC=∠DFC=135°。

于是,我們就要想辦法把∠EFC構建在一個等腰直角三角形中。從圖中可知有兩種做輔助線的方法:

等腰直角三角形的八大題型(活用等腰直角三角形的性質解題)2

一是如圖二,過點C作CG⊥BD于點G; 雖然能很容易判明AF∥CG,∠ACG=∠EAF=∠CBE,但無法證明别的關系,不能确定RtΔCGF是等腰直角三角形,∠EFC=45°。

第二種作輔助線的方法如圖三,過點C作CG⊥CF,交BD于點G。

等腰直角三角形的八大題型(活用等腰直角三角形的性質解題)3

因為CG⊥CF,所以∠FCG=90°,∠ECG ∠FCE=90°

由已知條件知∠ACB=90°,∠ECG ∠GCB=90°

∠FCE=∠GCB

因為RtΔAFE與RtΔBCE構成8字模型,所以∠EAF=∠CBE

在ΔACF和ΔBGC中

∠EAF=∠CBE

AC=AB

∠FCE=∠GCB

所以ΔACF≌ΔBGC,CF=CG

因為CG⊥BD,所以ΔCGF為直角三角形

又因為CF=CG,所以ΔCGF為等腰直角三角形,∠EFC=∠FCG=45°

所以∠AFC=∠AFE ∠EFC =135°,所以∠DFC=135°

在ΔACF和ΔDCF中

AF=DF

∠AFC=∠DFC

CF=CF

所以ΔACF≌ΔDCF,CD=AC

所以CD=BC

這是我對這道題的解析,希望能對朋友們有所幫助,更期待得到您更簡捷的方法。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
不斷思考的名人名言
不斷思考的名人名言
讓人陷入思考的29個句子:1、從來如此,便對麼?——魯迅《狂人日記》2、男人做完愛,總擔心女人糾纏他;女人做完愛,總擔心男人不要她。——張愛玲《色·戒》3、興趣是最好的老師,其次是恥辱。4、貧僧自東土大唐而來,往西天取經而去。——知道自己是...
2025-12-29
美國宇航員真的存在嗎
美國宇航員真的存在嗎
許多研究人員長期以來一直在想,地獄究竟在哪裡,兩千年來一直令人疑惑,因為他們相信地獄的存在。其中,還有對這方面進行研究,而且有很多人都在進行的,但是佛羅裡達國際神學研究所的專家的發現非常重要。首先,他仔細閱讀過聖經,在啟示錄21.8,寫着:...
2025-12-29
飛在天上的感覺
飛在天上的感覺
在裡約,除了沙灘漫步,登山遠眺,吃香喝辣之外,還有一項有趣但有風險的運動,隻有少部分人會去嘗試,那就是玩滑翔傘(playparagliders)。這項運動在裡約是如此有名,以至于在本片中,滑翔傘的鏡頭反複出現。在晴好的天氣裡,藍天白雲下飄蕩...
2025-12-29
下沉衛生間不鋪鋼筋行嗎
下沉衛生間不鋪鋼筋行嗎
下沉衛生間不鋪鋼筋行嗎?,我來為大家科普一下關于下沉衛生間不鋪鋼筋行嗎?以下内容希望對你有幫助!下沉衛生間不鋪鋼筋行嗎現在很多樓盤在開發商時衛生間被建設成下沉式。就是指在主體建造時将衛生間結構層局部或整體下沉離相應地面一定高度,這個工地通常...
2025-12-29
小型企業vi設計
小型企業vi設計
我國促進中小企業發展的政策不斷完善,企業市場發展環境不斷地在優化,中小企業呈現又快又好的發展态勢,對我國經濟社會發展全局作出重要貢獻。截止2021年末,我國中小企業數量高達4800萬戶,發展高端企業也是中小企業的一個機遇,突破自己的領域,讓...
2025-12-29
Copyright 2023-2025 - www.tftnews.com All Rights Reserved