首页
/
每日頭條
/
圖文
/
高數導數公式總結
高數導數公式總結
更新时间:2026-01-29 08:43:58

老黃為高數付出了無比的熱情。這是一道與導數和極限、介值定理包括拉格朗日中值定理或羅爾中值定理等知識有關的高數解答題。老黃會為大家講解教材的解法,并分享老黃自創的解法。希望大家能從中領會其中的解法思路,并對你有所幫助。

高數導數公式總結(高數導數極限題的解法思路)1

證明:設f在R上二階可導,若f在R上有界,則存在ξ∈R,使f”(ξ)=0.

相信大家還是比較願意先了解一下教材的解法吧。

證1:若f”(x)變号,則由導數的介值性知,存在ξ∈R,使得f”(ξ)=0. 【先确定這種情形是符合的。導數的介值性定理又稱為“達布定理”,是《老黃學高數》系列視頻第142講所分享的内容。連續函數的介值定理,則當介值為0時,其實就是零點的存在性定理】

若f”(x)不變号,不妨設f”(x)>0, 則f’(x)單調增, 【f"(x)<0時,與下面的證明過程類似】

取x0使f’(x0)>0, 則當x>x0時,存在η1∈(x0,x),使【雖然未必有f'(x0)>0,但不要着急,下面會分析f'(x0)<0的情形】

f(x)=f(x0) f’(η1)(x-x0)>f(x0) f’(x0)(x-x0)→ ∞(x→ ∞),【前面的等式是拉格朗日中值定理的應用,後面的不等式是因為f'(x)單調增,所以f'(η1)>f'(x0)。最後的函數是過一、三象限的一次函數,所以當x趨于正無窮時,f(x)也趨于正無窮,那麼函數就沒有上界】

若f’(x0)<0,則當x<x0時,存在η2∈(x,x0),使【這就開始分析f'(x0)<0的情形了,注意,此時所取區間與上一種情形在形式上是相反的。兩種情形必有其一】

f(x)=f(x0) f’(η2)(x-x0)>f(x0) f’(x0)(x-x0)→ ∞(x→-∞),【前面的等式仍運用的是拉格朗日中值定理,後面的不等式是因為f'(x)單調減,所以f'(η1)>f'(x0)。最後的函數是過二、四象限的一次函數,所以當x趨于負無窮時,f(x)趨于正無窮,函數仍沒有上界】

結論與題設f在R上有界矛盾. 【兩種情形都與函數有界矛盾,所以f"(x)必變号。回到一開始假設的第一種情況,它卻是必然的】

∴存在ξ∈R,使f”(ξ)=0. 得證!

接下來分享老黃自創的方法。高數題若不能用自創的方法求解,就不算已經學會并理解了哦。

證2:依題意,lim( x→∞)f(x), lim( x→∞)f’(x) 都存在, 【可導,所以連續,因此兩者都存在。如果lim( x→∞)f’(x)趨于無窮,f就無界。在老黃的上一個作品中,證明過,這兩個極限存在時,有下面的結論】

∴lim( x→∞)f’(x)=0.

若f’(x)≡0, 則f”(x)≡0,得證!【和證法1類似的,先分析一種特殊的情形。與證法1不同的是,證法1中的特殊情形其實是必然的。而這個特殊情形的确就真的隻是一種特殊情形而已】

若存在點x0, 使得f’(x0)≠0, 不妨設y0=f’(x0)>0. 【y0<0時,與下面的證明過程類似】

則對任意0<r<y0 , 必存在a<y0<b, 由連續函數的介值定理,【其實也是極限的保不等式性決定的,不過極限的保不等式一般習慣上認為隻是在極小的鄰域上研究的,即是一個相對微觀的概念,而介值性定理則相對比較宏觀】

有ξ1∈(-∞, a), ξ2∈(b, ∞), 使得f’(ξ1)=f’(ξ2)=r, 由羅爾中值定理知,

至少存在一點ξ∈(ξ1, ξ2)⊂R, 使得f”(ξ)=0. 得證!

那你能不能也寫一個自己的證法呢?

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
越巫自取滅亡的原因(先秦典籍中的火葬探析
越巫自取滅亡的原因(先秦典籍中的火葬探析
  先秦典籍中的火葬探析   姚海濤   (青島理工大學琴島學院,山東青島 266106)   摘要:火葬習俗古已有之。先秦典籍中保留了有關火葬的大量文本證據。大體言之,《周易》中的離卦與火葬有着密切關系,作為刑法處罰方式而存在,主要指向不孝子這一群體。而《墨子》《呂氏春秋》《荀子》《列子》中記錄的火葬主要是作為氐、羌以及儀渠民族的喪葬形制。透過這些現象側面...
2026-01-29
香港和勝和最新選坐館消息(和勝和坐館雞腳黑)
香港和勝和最新選坐館消息(和勝和坐館雞腳黑)
  他曾因愛人被掌掴,号令社團衆人,直接殺到仇家總部,将仇家的臉面按在地下摩擦。   曾經不可一世的黑幫新義安,被他澆滅了嚣張氣焰,對他退避三舍。   他就是香港黑幫“和勝和坐館”,“雞腳黑”。      50年代“雞腳黑”出生于香港,原名招國強。在“雞腳黑”出生直至他懂事的時候,他的家世在當地都稱得上“大戶人家”。   自幼“雞腳黑”便過着錦衣玉食,衣來張...
2026-01-29
剪映教學新手入門從零開始(小白學剪映剪映入門學習)
剪映教學新手入門從零開始(小白學剪映剪映入門學習)
  #初學剪輯# #小白學習自媒體##剪映入門#各位友友們好!我寫這個微頭條也是希望更多的新手小白容易上手,其實這個剪輯軟件并不難學習。主要是學會使用之後的運用技巧和創作玩法。同樣的功能可以不同精彩效果的作品,有些可以疊加,有些可以組合,有些可以調換順序等,主要看個人的創意思維。   廢話不多說,下面直接上圖。   1、創作按鍵      大家打開剪映...
2026-01-29
蜜獾能跑得過老虎嗎(如果蜜獾遇上老虎)
蜜獾能跑得過老虎嗎(如果蜜獾遇上老虎)
  蜜獾作為非洲大草原上的一代戰神,人送外号“平頭哥”。号稱終身不是在打架,就是在去打架的路上。管你是誰,生死看淡不服就幹。于是就有人想到,如果老虎和蜜獾撞在了一起,那會怎麼樣?雖然有人說,蜜獾和老虎撞在一起的概率幾乎為0,但是這不能阻止我們進行設想啊。      這位是現在歐亞大陸公認的森林之王,紋身哥——老虎      紋身哥:搞事,搞事,搞事,叫平頭的...
2026-01-29
冬季寒潮是冷鋒還是反氣旋(寒潮是反氣旋還是冷鋒)
冬季寒潮是冷鋒還是反氣旋(寒潮是反氣旋還是冷鋒)
  答:   寒潮:大範圍的強烈的冷空氣活動。侵襲我國的寒潮來自亞歐大陸上的冷高壓活動。故,寒潮是反氣旋。   冷鋒:冷空氣向暖空氣方向移動的鋒。冬季,形成于蒙古、西伯利亞的強大的冷高壓經常活動,并常常南下進入我國,形成寒潮。此時,冷空氣向暖空氣方向移動。故,寒潮是冷鋒。   寒潮屬于天氣現象,且屬于一種災害天氣現象。反氣旋、冷鋒屬于天氣系統。非要把兩挂上鈎...
2026-01-29
Copyright 2023-2026 - www.tftnews.com All Rights Reserved