首页
/
每日頭條
/
教育
/
數學小學的所有概念
數學小學的所有概念
更新时间:2025-01-10 22:40:19

數學小學的所有概念(小學到初中的全部數學概念)1

小學知識點總結

三角形的面積=底×高÷2。

公式 S= a×h÷2

正方形的面積=邊長×邊長

公式 S= a×a

長方形的面積=長×寬

公式 S= a×b

平行四邊形的面積=底×高

公式 S= a×h

梯形的面積=(上底 下底)×高÷2

公式 S=(a b)h÷2

内角和:三角形的内角和=180度。

長方體的體積=長×寬×高

公式:V=abh

長方體(或正方體)的體積=底面積×高

公式:V=abh

正方體的體積=棱長×棱長×棱長

公式:V=aaa

圓的周長=直徑×π

公式:L=πd=2πr

圓的面積=半徑×半徑×π

公式:S=πr2 圓柱的表(側)

面積:圓柱的表(側)面積等于底面的周長乘高。

公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。

公式:S=ch 2s=ch 2πr2

圓柱的體積:圓柱的體積等于底面積乘高。

公式:V=Sh 圓錐的體積=1/3底面×積高。

公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,隻把分子相加減,分母不變。

異分母的分數相加減,先通分,然後再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等于乘以這個數的倒數。

讀懂理解會應用以下定義定理性質

公式 一、算術方面 1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分别同這個數相乘,再把兩個積相加,結果不變。

如:(2 4)×5=2×5 4×5 6、除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、什麼叫等式?等号左邊的數值與等号右邊的數值相等的式子 叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數, 等式仍然成立。

8、什麼叫方程式?答:含有未知數的等式叫方程式。

9、 什麼叫一元一次方程式?答:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。 學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。

10、分數:把單位"1"平均分成若幹份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,隻把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等于分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數 (0除外),分數的大小不變。

20、一個數除以分數,等于這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等于甲數乘以乙數的倒數。

數量關系計算公式方面

1、單價×數量=總價

2、單産量×數量=總産量

3、速度×時間=路程

4、工效×時間=工作總量

5、加數 加數=和

一個加數=和+另一個加數

被減數-減數=差

減數=被減數-差

被減數=減數+差

因數×因數=積

一個因數=積÷另一個因數

被除數÷除數=商

除數=被除數÷商

被除數=商×除數

有餘數的除法: 被除數=商×除數 餘數

一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。

例:90÷5÷6=90÷(5×6)

6、單位換算:

1公裡=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

1噸=1000千克 1千克= 1000克= 1公斤= 1市斤 1公頃=10000平方米。

1畝=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什麼叫比:兩個數相除就叫做兩個數的比。

如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。

如3:6=9:18 9、比例的基本性質:在比例裡,兩外項之積等于兩内項之積。

10、解比例:求比例中的未知項,叫做解比例。

如3:χ=9:18

11、正比例:兩種相關聯的量,一種量變化,另一種量也随着化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也随着變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。

如:x×y = k( k一定)或k / x = y 百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,隻要把小數點向右移動兩位,同時在後面添上百分号。其實,把小數化成百分數,隻要把這個小數乘以100%就行了。 把百分數化成小數,隻要把百分号去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。 把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化發。

16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數: 公約數隻有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分别化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。 分數計算到最後,得數必須化成最簡分數。 個位上是0、2、4、6、8的數,都能被2整除,即能用2進行 約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果隻有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有别的約數,這樣的數叫做合數。

1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做循環小數。如3. 141414

32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做不循環小數。

如3. 141592654

33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做無限不循環小數

。如3. 141592654……

34、什麼叫代數? 代數就是用字母代替數。

35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a b )*c

初中數學知識點歸納.

有理數的加法運算

同号兩數來相加,絕對值加不變号。

異号相加大減小,大數決定和符号。

互為相反數求和,結果是零須記好。

【注】"大"減"小"是指絕對值的大小。

有理數的減法運算

減正等于加負,減負等于加正。

有理數的乘法運算符号法則

同号得正異号負,一項為零積是零。

合并同類項

說起合并同類項,法則千萬不能忘。

隻求系數代數和,字母指數留原樣。

去、添括号法則

去括号或添括号,關鍵要看連接号。

擴号前面是正号,去添括号不變号。

括号前面是負号,去添括号都變号。

解方程

已知未知鬧分離,分離要靠移完成。

移加變減減變加,移乘變除除變乘。

平方差公式

兩數和乘兩數差,等于兩數平方差。

積化和差變兩項,完全平方不是它。

完全平方公式

二數和或差平方,展開式它共三項。

首平方與末平方,首末二倍中間放。

和的平方加聯結,先減後加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先減後加差平方。

解一元一次方程

先去分母再括号,移項變号要記牢。

同類各項去合并,系數化"1"還沒好。

求得未知須檢驗,回代值等才算了。

解一元一次方程

先去分母再括号,移項合并同類項。

系數化1還沒好,準确無誤不白忙。

因式分解與乘法

和差化積是乘法,乘法本身是運算。

積化和差是分解,因式分解非運算。

因式分解

兩式平方符号異,因式分解你别怕。

兩底和乘兩底差,分解結果就是它。

兩式平方符号同,底積2倍坐中央。

因式分解能與否,符号上面有文章。

同和異差先平方,還要加上正負号。

同正則正負就負,異則需添幂符号。

因式分解

一提二套三分組,十字相乘也上數。

四種方法都不行,拆項添項去重組。

重組無望試求根,換元或者算餘數。

多種方法靈活選,連乘結果是基礎。

同式相乘若出現,乘方表示要記住。

【注】 一提(提公因式)二套(套公式)

因式分解

一提二套三分組,叉乘求根也上數。

五種方法都不行,拆項添項去重組。

對症下藥穩又準,連乘結果是基礎。

二次三項式的因式分解

先想完全平方式,十字相乘是其次。

兩種方法行不通,求根分解去嘗試。

比和比例

兩數相除也叫比,兩比相等叫比例。

外項積等内項積,等積可化八比例。

分别交換内外項,統統都要叫更比。

同時交換内外項,便要稱其為反比。

前後項和比後項,比值不變叫合比。

前後項差比後項,組成比例是分比。

兩項和比兩項差,比值相等合分比。

前項和比後項和,比值不變叫等比。

解比例

外項積等内項積,列出方程并解之。

求比值

由已知去求比值,多種途徑可利用。

活用比例七性質,變量替換也走紅。

消元也是好辦法,殊途同歸會變通。

正比例與反比例

商定變量成正比,積定變量成反比。

正比例與反比例

變化過程商一定,兩個變量成正比。

變化過程積一定,兩個變量成反比。

判斷四數成比例

四數是否成比例,遞增遞減先排序。

兩端積等中間積,四數一定成比例。

判斷四式成比例

四式是否成比例,生或降幂先排序。

兩端積等中間積,四式便可成比例。

比例中項

成比例的四項中,外項相同會遇到。

有時内項會相同,比例中項少不了。

比例中項很重要,多種場合會碰到。

成比例的四項中,外項相同有不少。

有時内項會相同,比例中項出現了。

同數平方等異積,比例中項無處逃。

根式與無理式

表示方根代數式,都可稱其為根式。

根式異于無理式,被開方式無限制。

被開方式有字母,才能稱為無理式。

無理式都是根式,區分它們有标志。

被開方式有字母,又可稱為無理式。

求定義域

求定義域有講究,四項原則須留意。

負數不能開平方,分母為零無意義。

指是分數底正數,數零沒有零次幂。

限制條件不唯一,滿足多個不等式。

求定義域要過關,四項原則須注意。

負數不能開平方,分母為零無意義。

分數指數底正數,數零沒有零次幂。

限制條件不唯一,不等式組求解集。

解一元一次不等式

先去分母再括号,移項合并同類項。

系數化"1"有講究,同乘除負要變向。

先去分母再括号,移項别忘要變号。

同類各項去合并,系數化"1"注意了。

同乘除正無防礙,同乘除負也變号。

解一元一次不等式組

大于頭來小于尾,大小不一中間找。

大大小小沒有解,四種情況全來了。

同向取兩邊,異向取中間。

中間無元素,無解便出現。

幼兒園小鬼當家,(同小相對取較小)

敬老院以老為榮,(同大就要取較大)

軍營裡沒老沒少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)

解一元二次不等式

首先化成一般式,構造函數第二站。

判别式值若非負,曲線橫軸有交點。

a正開口它向上,大于零則取兩邊。

代數式若小于零,解集交點數之間。

方程若無實數根,口上大零解為全。

小于零将沒有解,開口向下正相反。

用平方差公式因式分解

異号兩個平方項,因式分解有辦法。

兩底和乘兩底差,分解結果就是它。

用完全平方公式因式分解

兩平方項在兩端,底積2倍在中部。

同正兩底和平方,全負和方相反數。

分成兩底差平方,方正倍積要為負。

兩邊為負中間正,底差平方相反數。

一平方又一平方,底積2倍在中路。

三正兩底和平方,全負和方相反數。

分成兩底差平方,兩端為正倍積負。

兩邊若負中間正,底差平方相反數。

用公式法解一元二次方程

要用公式解方程,首先化成一般式。

調整系數随其後,使其成為最簡比。

确定參數abc,計算方程判别式。

判别式值與零比,有無實根便得知。

有實根可套公式,沒有實根要告之。

用常規配方法解一元二次方程

左未右已先分離,二系化"1"是其次。

一系折半再平方,兩邊同加沒問題。

左邊分解右合并,直接開方去解題。

該種解法叫配方,解方程時多練習。

用間接配方法解一元二次方程

已知未知先分離,因式分解是其次。

調整系數等互反,和差積套恒等式。

完全平方等常數,間接配方顯優勢

【注】 恒等式

解一元二次方程

方程沒有一次項,直接開方最理想。

如果缺少常數項,因式分解沒商量。

b、c相等都為零,等根是零不要忘。

b、c同時不為零,因式分解或配方,

也可直接套公式,因題而異擇良方。

正比例函數的鑒别

判斷正比例函數,檢驗當分兩步走。

一量表示另一量, 有沒有。

若有再去看取值,全體實數都需要。

區分正比例函數,衡量可分兩步走。

一量表示另一量, 是與否。

若有還要看取值,全體實數都要有。

正比例函數的圖象與性質

正比函數圖直線,經過 和原點。

K正一三負二四,變化趨勢記心間。

K正左低右邊高,同大同小向爬山。

K負左高右邊低,一大另小下山巒。

一次函數 一次函數圖直線,經過 點。

K正左低右邊高,越走越高向爬山。

K負左高右邊低,越來越低很明顯。

K稱斜率b截距,截距為零變正函。

反比例函數 反比函數雙曲線,經過 點。

K正一三負二四,兩軸是它漸近線。

K正左高右邊低,一三象限滑下山。

K負左低右邊高,二四象限如爬山。

二次函數

二次方程零換y,二次函數便出現。

全體實數定義域,圖像叫做抛物線。

抛物線有對稱軸,兩邊單調正相反。

A定開口及大小,線軸交點叫頂點。

頂點非高即最低。上低下高很顯眼。

如果要畫抛物線,平移也可去描點,

提取配方定頂點,兩條途徑再挑選。

列表描點後連線,平移規律記心間。

左加右減括号内,号外上加下要減。

二次方程零換y,就得到二次函數。

圖像叫做抛物線,定義域全體實數。

A定開口及大小,開口向上是正數。

絕對值大開口小,開口向下A負數。

抛物線有對稱軸,增減特性可看圖。

線軸交點叫頂點,頂點縱标最值出。

如果要畫抛物線,描點平移兩條路。

提取配方定頂點,平移描點皆成圖。

列表描點後連線,三點大緻定全圖。

若要平移也不難,先畫基礎抛物線,

頂點移到新位置,開口大小随基礎。

【注】基礎抛物線 直線、射線與線段

直線射線與線段,形狀相似有關聯。

直線長短不确定,可向兩方無限延。

射線僅有一端點,反向延長成直線。

線段定長兩端點,雙向延伸變直線。

兩點定線是共性,組成圖形最常見。

一點出發兩射線,組成圖形叫做角。

共線反向是平角,平角之半叫直角。

平角兩倍成周角,小于直角叫銳角。

直平之間是鈍角,平周之間叫優角。

互餘兩角和直角,和是平角互補角。

一點出發兩射線,組成圖形叫做角。

平角反向且共線,平角之半叫直角。

平角兩倍成周角,小于直角叫銳角。

鈍角界于直平間,平周之間叫優角。

和為直角叫互餘,互為補角和平角。

證等積或比例線段

等積或比例線段,多種途徑可以證。

證等積要改等比,對照圖形看特征。

共點共線線相交,平行截比把題證。

三點定型十分像,想法來把相似證。

圖形明顯不相似,等線段比替換證。

換後結論能成立,原來命題即得證。

實在不行用面積,射影角分線也成。

隻要學習肯登攀,手腦并用無不勝。

解無理方程

一無一有各一邊,兩無也要放兩邊。

乘方根号無蹤迹,方程可解無負擔。

兩無一有相對難,兩次乘方也好辦。

特殊情況去換元,得解驗根是必然。

解分式方程

先約後乘公分母,整式方程轉化出。

特殊情況可換元,去掉分母是出路。

求得解後要驗根,原留增舍别含糊。

列方程解應用題

列方程解應用題,審設列解雙檢答。

審題弄清已未知,設元直間兩辦法。

列表畫圖造方程,解方程時守章法。

檢驗準且合題意,問求同一才作答。

添加輔助線

學習幾何體會深,成敗也許一線牽。

分散條件要集中,常要添加輔助線。

畏懼心理不要有,其次要把觀念變。

熟能生巧有規律,真知灼見靠實踐。

圖中已知有中線,倍長中線把線連。

旋轉構造全等形,等線段角可代換。

多條中線連中點,便可得到中位線。

倘若知角平分線,既可兩邊作垂線。

也可沿線去翻折,全等圖形立呈現。

角分線若加垂線,等腰三角形可見。

角分線加平行線,等線段角位置變。

已知線段中垂線,連接兩端等線段。

輔助線必畫虛線,便與原圖聯系看。

兩點間距離公式

同軸兩點求距離,大減小數就為之。

與軸等距兩個點,間距求法亦如此。

平面任意兩個點,橫縱标差先求值。

差方相加開平方,距離公式要牢記。

矩形的判定

任意一個四邊形,三個直角成矩形;

對角線等互平分,四邊形它是矩形。

已知平行四邊形,一個直角叫矩形;

兩對角線若相等,理所當然為矩形。

菱形的判定

任意一個四邊形,四邊相等成菱形;

四邊形的對角線,垂直互分是菱形。

已知平行四邊形,鄰邊相等叫菱形;

兩對角線若垂直,順理成章為菱形。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
警惕!導緻兒童“性早熟”的食品
警惕!導緻兒童“性早熟”的食品
楠楠今年6歲,在幼兒園的例行體檢中,醫生發現這個長得胖乎乎的女孩雙乳下面有硬塊,老師打電話讓楠楠媽帶她去看兒童醫院的“性早熟門診”。在醫院拍了片子,發現她的骨齡已有8周歲,醫生建議打一種延緩發育的進口針,每月一針,直到楠楠滿9歲。“否則楠楠有可能長不到1。5米,而且身體發育會遠遠超過心理發育,這會對...
2025-01-10
如何看待孩子性早熟?
如何看待孩子性早熟?
性早熟是一種青春期發育的異常,表現為青春期特征提前出現。性早熟是一種青春期發育的異常,表現為青春期特征提前出現。一般認為,如果女孩在8周歲以前乳房就開始發育,10周歲以前出現月經,男孩9歲以前出現睾丸、陰莖增大,身材迅速增高,就稱為性早熟。近年來,随着社會經濟的發展,人民生活水平的提高,兒童營養得到...
2025-01-10
看電視太多3歲進入青春期
看電視太多3歲進入青春期
英國諾丁漢市12歲女童海莉・史密斯患有一種罕見的早熟症,她在3歲時就進入了“青春期”,不僅頻頻遭遇“月經痛”,而且上幼兒園時胸部就開始隆起。令人難以置信的是,3歲就進入“青春期”的英國女童遠不止海莉一個,英國獨立電視台對這一驚人的現象進行了大披露。英國早熟女童艾莉・梅3歲女童步入“青春期”據報道,現...
2025-01-10
莫讓早期性教育影響孩子一生性觀念
莫讓早期性教育影響孩子一生性觀念
早期性教育的好壞決定孩子一生的性觀念。家長要讓孩子從小懂得性是一件正大光明并且美好的事,教孩子什麼是性犯罪,并告誡他們遠離。這樣才能讓他們最終發育成一個具有良好的性觀念的成年人。首先,家庭性教育應注意順其自然,但還要注意把握時機。當孩子提出性問題時,是對孩子進行性教育的最佳時期。父母就應微笑着看着孩...
2025-01-10
不良環境“催熟”我們的孩子
不良環境“催熟”我們的孩子
孩子的行為本該是天真而自然的,可現在,人們覺得孩子越來越不像孩子了,他們的言語和行動,往往能吓大人一跳。前不久有調查顯示,我國青少年目前的性成熟年齡普遍比上個世紀七十年代提前了4至5歲。在天津,到兒童保健所就診的性早熟病例也有增多之勢。已經有資料證實,我國兒童性早熟正以每年30%的速度增加,孩子們正...
2025-01-10
Copyright 2023-2025 - www.tftnews.com All Rights Reserved