首页
/
每日頭條
/
圖文
/
python 數字圖像處理
python 數字圖像處理
更新时间:2026-01-21 19:24:35

摘要:本篇文章結合灰度三維圖像講解圖像頂帽運算和圖像黑貓運算,通過Python調用OpenCV函數實現。

本篇文章繼續深入,結合灰度三維圖像講解圖像頂帽運算和圖像黑貓運算,通過Python調用OpenCV函數實現。

一.圖像頂帽運算

圖像頂帽運算(top-hat transformation)又稱為圖像禮帽運算,它是用原始圖像減去圖像開運算後的結果,常用于解決由于光照不均勻圖像分割出錯的問題。其公式定義如下:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)1

圖像頂帽運算是用一個結構元通過開運算從一幅圖像中删除物體,校正不均勻光照的影響,其效果圖如下圖所示。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)2

在Python中,圖像頂帽運算主要調用morphologyEx()實現,其中參數cv2.MORPH_TOPHAT表示頂帽處理,函數原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

  • src表示原始圖像
  • cv2.MORPH_TOPHAT表示圖像頂帽運算
  • kernel表示卷積核,可以用numpy.ones()函數構建

假設存在一張光照不均勻的米粒圖像,如圖所示,我們需要調用圖像頂帽運算解決光照不均勻的問題。其Python代碼如下所示:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)3

#encoding:utf-8 import cv2 import numpy as np #讀取圖片 src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED) #設置卷積核 kernel = np.ones((10,10), np.uint8) #圖像頂帽運算 result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel) #顯示圖像 cv2.imshow("src", src) cv2.imshow("result", result) #等待顯示 cv2.waitKey(0) cv2.destroyAllWindows()複制

其運行結果如下,它有效地将米粒與背景分離開來。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)4

二.圖像黑帽運算

圖像底帽運算(bottom-hat transformation)又稱為圖像黑帽運算,它是用圖像閉運算操作減去原始圖像後的結果,從而獲取圖像内部的小孔或前景色中黑點,也常用于解決由于光照不均勻圖像分割出錯的問題。其公式定義如下:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)5

圖像底帽運算是用一個結構元通過閉運算從一幅圖像中删除物體,常用于校正不均勻光照的影響。其效果圖如下圖所示。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)6

在Python中,圖像底帽運算主要調用morphologyEx()實現,其中參數cv2.MORPH_BLACKHAT表示底帽或黑帽處理,函數原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

  • src表示原始圖像
  • cv2.MORPH_BLACKHAT表示圖像底帽或黑帽運算
  • kernel表示卷積核,可以用numpy.ones()函數構建

Python實現圖像底帽運算的代碼如下所示:

#encoding:utf-8 import cv2 import numpy as np #讀取圖片 src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED) #設置卷積核 kernel = np.ones((10, 10), np.uint8) #圖像黑帽運算 result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel) #顯示圖像 cv2.imshow("src", src) cv2.imshow("result", result) #等待顯示 cv2.waitKey(0) cv2.destroyAllWindows()複制

其運行結果如圖所示:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)7

三.基于灰度三維圖的頂帽黑帽運算

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)8

為什麼圖像頂帽運算會消除光照不均勻的效果呢?通常可以利用灰度三維圖來進行解釋該算法。灰度三維圖主要調用Axes3D包實現,對原圖繪制灰度三維圖的代碼如下:

# -*- coding: utf-8 -*- import numpy as np import cv2 as cv import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter #讀取圖像 img = cv.imread("test06.png") img = cv.cvtColor(img,cv.COLOR_BGR2GRAY) imgd = np.array(img) #image類轉numpy #準備數據 sp = img.shape h = int(sp[0]) #圖像高度(rows) w = int(sp[1]) #圖像寬度(colums) of image #繪圖初始處理 fig = plt.figure(figsize=(16,12)) ax = fig.gca(projection="3d") x = np.arange(0, w, 1) y = np.arange(0, h, 1) x, y = np.meshgrid(x,y) z = imgd surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm) #自定義z軸 ax.set_zlim(-10, 255) ax.zaxis.set_major_locator(LinearLocator(10)) #設置z軸網格線的疏密 #将z的value字符串轉為float并保留2位小數 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # 設置坐标軸的label和标題 ax.set_xlabel('x', size=15) ax.set_ylabel('y', size=15) ax.set_zlabel('z', size=15) ax.set_title("surface plot", weight='bold', size=20) #添加右側的色卡條 fig.colorbar(surf, shrink=0.6, aspect=8) plt.show()複制

運行結果如下圖所示:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)9

從圖像中的像素走勢顯示了該圖受各部分光照不均勻的影響,從而造成背景灰度不均現象,其中凹陷對應圖像中灰度值比較小的區域。而通過圖像白帽運算後的圖像灰度三維圖的代碼如下:

# -*- coding: utf-8 -*- import numpy as np import cv2 as cv import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter #讀取圖像 img = cv.imread("test06.png") img = cv.cvtColor(img,cv.COLOR_BGR2GRAY) #圖像黑帽運算 kernel = np.ones((10,10), np.uint8) result = cv.morphologyEx(img, cv.MORPH_BLACKHAT, kernel) #image類轉numpy imgd = np.array(result) #準備數據 sp = result.shape h = int(sp[0]) #圖像高度(rows) w = int(sp[1]) #圖像寬度(colums) of image #繪圖初始處理 fig = plt.figure(figsize=(8,6)) ax = fig.gca(projection="3d") x = np.arange(0, w, 1) y = np.arange(0, h, 1) x, y = np.meshgrid(x,y) z = imgd surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm) #自定義z軸 ax.set_zlim(-10, 255) ax.zaxis.set_major_locator(LinearLocator(10)) #設置z軸網格線的疏密 #将z的value字符串轉為float并保留2位小數 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # 設置坐标軸的label和标題 ax.set_xlabel('x', size=15) ax.set_ylabel('y', size=15) ax.set_zlabel('z', size=15) ax.set_title("surface plot", weight='bold', size=20) #添加右側的色卡條 fig.colorbar(surf, shrink=0.6, aspect=8) plt.show()複制

效果圖如下所示,對應的灰度更集中于10至100區間,由此證明了不均勻的背景被大緻消除了,有利于後續的阈值分割或圖像分割。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)10

點擊關注,第一時間了解華為雲新鮮技術~

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
時間無價人生有價的文案
時間無價人生有價的文案
時間無價人生有價的文案?黃金易得,知己難求漫長的一生中,你總會遇見孤軍奮戰的時候,在這場隻有你的戰争中,注定要單槍匹馬正因如此,若有一知己,此生而無憾相識滿天下,知心能幾人?有人說知己就是遇見另一個自己,彼此默默會議,悉心聆聽,在靈魂裡琴瑟...
2026-01-21
法律上特别程序都有哪些
法律上特别程序都有哪些
民事特别程序是指人民法院審理某些非民事權益糾紛案件所使用的特殊程序,此程序與民事簡易程序和民事普通程序所對應。人民法院适用特别程序審理選民資格案件、宣告失蹤或者宣告死亡案件、認定公民無民事行為能力或者限制民事行為能力案件、認定财産無主案件、...
2026-01-21
抖音上很火的帶字潮圖
抖音上很火的帶字潮圖
最近抖音上面很火的紋身小姐姐壁紙,
2026-01-21
文化創新與文化創造有何不同
文化創新與文化創造有何不同
文化創新與文化創造有何不同?作者:管甯(福建省中國特色社會主義理論體系研究中心研究員),我來為大家講解一下關于文化創新與文化創造有何不同?跟着小編一起來看一看吧!文化創新與文化創造有何不同作者:管甯(福建省中國特色社會主義理論體系研究中心研...
2026-01-21
u盤格式化以後變小了
u盤格式化以後變小了
U盤是我們常常會使用到的移動儲存設備,雖然它很好用,但是有時候它也會出現問題,最常見的就是格式化後容量變小了,那麼當你遇到U盤格式化後容量變小怎麼辦?不知道的朋友趕緊看看可可整理的U盤格式化後容量變小的解決方法吧!方法/步驟:1、下載USB...
2026-01-21
Copyright 2023-2026 - www.tftnews.com All Rights Reserved