首页
/
每日頭條
/
圖文
/
python 數字圖像處理
python 數字圖像處理
更新时间:2025-07-12 08:27:14

摘要:本篇文章結合灰度三維圖像講解圖像頂帽運算和圖像黑貓運算,通過Python調用OpenCV函數實現。

本篇文章繼續深入,結合灰度三維圖像講解圖像頂帽運算和圖像黑貓運算,通過Python調用OpenCV函數實現。

一.圖像頂帽運算

圖像頂帽運算(top-hat transformation)又稱為圖像禮帽運算,它是用原始圖像減去圖像開運算後的結果,常用于解決由于光照不均勻圖像分割出錯的問題。其公式定義如下:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)1

圖像頂帽運算是用一個結構元通過開運算從一幅圖像中删除物體,校正不均勻光照的影響,其效果圖如下圖所示。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)2

在Python中,圖像頂帽運算主要調用morphologyEx()實現,其中參數cv2.MORPH_TOPHAT表示頂帽處理,函數原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

  • src表示原始圖像
  • cv2.MORPH_TOPHAT表示圖像頂帽運算
  • kernel表示卷積核,可以用numpy.ones()函數構建

假設存在一張光照不均勻的米粒圖像,如圖所示,我們需要調用圖像頂帽運算解決光照不均勻的問題。其Python代碼如下所示:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)3

#encoding:utf-8 import cv2 import numpy as np #讀取圖片 src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED) #設置卷積核 kernel = np.ones((10,10), np.uint8) #圖像頂帽運算 result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel) #顯示圖像 cv2.imshow("src", src) cv2.imshow("result", result) #等待顯示 cv2.waitKey(0) cv2.destroyAllWindows()複制

其運行結果如下,它有效地将米粒與背景分離開來。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)4

二.圖像黑帽運算

圖像底帽運算(bottom-hat transformation)又稱為圖像黑帽運算,它是用圖像閉運算操作減去原始圖像後的結果,從而獲取圖像内部的小孔或前景色中黑點,也常用于解決由于光照不均勻圖像分割出錯的問題。其公式定義如下:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)5

圖像底帽運算是用一個結構元通過閉運算從一幅圖像中删除物體,常用于校正不均勻光照的影響。其效果圖如下圖所示。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)6

在Python中,圖像底帽運算主要調用morphologyEx()實現,其中參數cv2.MORPH_BLACKHAT表示底帽或黑帽處理,函數原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

  • src表示原始圖像
  • cv2.MORPH_BLACKHAT表示圖像底帽或黑帽運算
  • kernel表示卷積核,可以用numpy.ones()函數構建

Python實現圖像底帽運算的代碼如下所示:

#encoding:utf-8 import cv2 import numpy as np #讀取圖片 src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED) #設置卷積核 kernel = np.ones((10, 10), np.uint8) #圖像黑帽運算 result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel) #顯示圖像 cv2.imshow("src", src) cv2.imshow("result", result) #等待顯示 cv2.waitKey(0) cv2.destroyAllWindows()複制

其運行結果如圖所示:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)7

三.基于灰度三維圖的頂帽黑帽運算

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)8

為什麼圖像頂帽運算會消除光照不均勻的效果呢?通常可以利用灰度三維圖來進行解釋該算法。灰度三維圖主要調用Axes3D包實現,對原圖繪制灰度三維圖的代碼如下:

# -*- coding: utf-8 -*- import numpy as np import cv2 as cv import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter #讀取圖像 img = cv.imread("test06.png") img = cv.cvtColor(img,cv.COLOR_BGR2GRAY) imgd = np.array(img) #image類轉numpy #準備數據 sp = img.shape h = int(sp[0]) #圖像高度(rows) w = int(sp[1]) #圖像寬度(colums) of image #繪圖初始處理 fig = plt.figure(figsize=(16,12)) ax = fig.gca(projection="3d") x = np.arange(0, w, 1) y = np.arange(0, h, 1) x, y = np.meshgrid(x,y) z = imgd surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm) #自定義z軸 ax.set_zlim(-10, 255) ax.zaxis.set_major_locator(LinearLocator(10)) #設置z軸網格線的疏密 #将z的value字符串轉為float并保留2位小數 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # 設置坐标軸的label和标題 ax.set_xlabel('x', size=15) ax.set_ylabel('y', size=15) ax.set_zlabel('z', size=15) ax.set_title("surface plot", weight='bold', size=20) #添加右側的色卡條 fig.colorbar(surf, shrink=0.6, aspect=8) plt.show()複制

運行結果如下圖所示:

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)9

從圖像中的像素走勢顯示了該圖受各部分光照不均勻的影響,從而造成背景灰度不均現象,其中凹陷對應圖像中灰度值比較小的區域。而通過圖像白帽運算後的圖像灰度三維圖的代碼如下:

# -*- coding: utf-8 -*- import numpy as np import cv2 as cv import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter #讀取圖像 img = cv.imread("test06.png") img = cv.cvtColor(img,cv.COLOR_BGR2GRAY) #圖像黑帽運算 kernel = np.ones((10,10), np.uint8) result = cv.morphologyEx(img, cv.MORPH_BLACKHAT, kernel) #image類轉numpy imgd = np.array(result) #準備數據 sp = result.shape h = int(sp[0]) #圖像高度(rows) w = int(sp[1]) #圖像寬度(colums) of image #繪圖初始處理 fig = plt.figure(figsize=(8,6)) ax = fig.gca(projection="3d") x = np.arange(0, w, 1) y = np.arange(0, h, 1) x, y = np.meshgrid(x,y) z = imgd surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm) #自定義z軸 ax.set_zlim(-10, 255) ax.zaxis.set_major_locator(LinearLocator(10)) #設置z軸網格線的疏密 #将z的value字符串轉為float并保留2位小數 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # 設置坐标軸的label和标題 ax.set_xlabel('x', size=15) ax.set_ylabel('y', size=15) ax.set_zlabel('z', size=15) ax.set_title("surface plot", weight='bold', size=20) #添加右側的色卡條 fig.colorbar(surf, shrink=0.6, aspect=8) plt.show()複制

效果圖如下所示,對應的灰度更集中于10至100區間,由此證明了不均勻的背景被大緻消除了,有利于後續的阈值分割或圖像分割。

python 數字圖像處理(跟我學Python圖像處理基于灰度三維圖的圖像頂帽運算和黑帽運算)10

點擊關注,第一時間了解華為雲新鮮技術~

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
石家莊麻辣燙探店
石家莊麻辣燙探店
石家莊麻辣燙探店?不知道大家喜不喜歡吃麻辣燙,反正小編我是很喜歡吃麻辣燙,主要是因為可選品種多,一次就能吃好多菜和肉,還有主食,我來為大家講解一下關于石家莊麻辣燙探店?跟着小編一起來看一看吧!石家莊麻辣燙探店不知道大家喜不喜歡吃麻辣燙,反正...
2025-07-12
在高速上怎麼安全駕駛
在高速上怎麼安全駕駛
開車,你是新手嗎?高速行車更安全,它有專用通行道。國道省道普通道,安全系數不忽視。行人摩托電瓶車,一不留神出事故。隻要高速守法規,危險小于其他道。你知道嗎?高速公路是最安全,像國道、省道、普通道路,可能在某個路口竄出的摩托車、電瓶車、行人等...
2025-07-12
怎麼快速有效提升芝麻信用分
怎麼快速有效提升芝麻信用分
芝麻分——支付寶推出的信用體系,通過支付寶龐大的客戶群體,現在已經目前最具知名度的民間征信。在很多情況下都有巨大作用,芝麻信用分數不僅代表個人信用等級,很多時候較高的信用分還能減少辦事流程。先說說芝麻分可以做什麼呢?1、免押服務。酒店民宿,...
2025-07-12
做完臉部線雕如果線斷了有感覺嗎
做完臉部線雕如果線斷了有感覺嗎
線雕是很多寶寶都熟知的醫美項目對于線雕很多求美者會有這樣的疑問:既然是可吸收蛋白線,那埋進去的線體遲早是要被代謝掉的,那這樣豈不是白做了嗎?這裡小編給你吃顆定心丸:不會!可吸收蛋白線非常安全可以在180天後逐漸被人體徹底代謝為二氧化碳與水,...
2025-07-12
河南中秋節哪裡看燈光
河南中秋節哪裡看燈光
天文科普專家介紹今年中秋是“十五的月亮十五圓”月亮最圓時刻為當天17時59分傍晚時分一輪圓月升起是賞月最佳時刻2022河南中秋賞月地圖來了!中秋夜晚,我省東部、東南部地區,雲量較少,皓月當空,能夠清晰地看到天空中“白玉盤”般的圓月;西部地區...
2025-07-12
Copyright 2023-2025 - www.tftnews.com All Rights Reserved