首页
/
每日頭條
/
教育
/
中考數學四點共圓用法
中考數學四點共圓用法
更新时间:2025-12-19 03:51:26

雖然在初中數學新課程标準下,四點共圓不再做要求,但是我們在解題的過程中如果靈活的運用四點共圓的性質,可以使複雜的題目變得簡單易解。況且在高中階段,高中老師會默認你在初中已經學會了這個知識,遇到了不會再進行過多講解,所以無論從哪方面講,我們都應該掌握好四點共圓的性質。

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)1

數學接龍

一、圓的内接四邊形的性質:

如果同一平面内的四個點在同一個圓上,則稱這四個點共圓,一般簡稱為"四點共圓"。

1)圓内接四邊形的對角互補:∠BAD ∠DCB=180°,∠ABC ∠ADC=180°;

2)圓内接四邊形的任意一個外角等于它的内對角:∠CBE=∠ADC;

3)圓心角的度數等于所對弧的圓周角的度數的兩倍:∠AOB=2∠ACB=2∠ADB;

4)共圓的四個點所連成同側共底的兩個三角形的頂角相等,即同弧所對的圓周角相等;

5)圓内接四邊形對應三角形相似:△ABP∽△DCP(三個内角對應相等)

6)相交弦定理:AP×CP=BP×DP(例5

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)2

四點共圓

而利用圓的内接四邊形解題,又分為兩種情形:一是直接利用圓的内接四邊形的性質解題;二是構造共圓,然後再利用圓的的知識和性質解題。

二、直接利用圓的内接四邊形的性質解題

例1、如圖,四邊形ABCD内接于⊙O,若∠BOD=138°,則它的一個外角∠DCE等于(  )

A.69° B.42° C.48° D.38°

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)3

答案:選A (圓内接四邊形的任意一個外角等于它的内對角

例2、(·涼山中考)如圖,已知四邊形ABCD内接于半徑為4的⊙O中,且∠C=2∠A,則BD=________.

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)4

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)5

例3、如圖,在⊙O的内接五邊形ABCDE中,∠CAD=35°,則∠B+∠E=( )

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)6

解:∵四邊形ABCD與四邊形ACDE是圓的兩個内接四邊形

∴∠B ∠ADC = 180°

∠E ∠ACD = 180°(圓内接四邊形的對角互補

∠B ∠E ∠ADC ∠ACD = 360°

而在△ACD中,∠ADC ∠CDA ∠ACD = 180°

∴∠ADC ∠ACD = 180°-35°= 145°

∴ ∠B+∠E=360°-145°=215°

例4、(2019·台州)如圖,AC是圓内接四邊形ABCD的一條對角線,點D關于AC的對稱點E在邊BC上,連接AE.若∠ABC=64°,則∠BAE的度數為

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)7

解:∵∠ABC=64°

∴∠ADC=116° (圓内接四邊形的對角互補

又點D關于AC的對稱點E在邊BC

∴∠AEC=116°

∴∠BAE = AEC -ABC = 116°-64°=52°

例5、ABCD為圓的内接四邊形,且其對角線AC與BD相交于點P,請證明相交弦定理:AP×CP=BP×DP

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)8

證明:∵共圓的四個點所連成同側共底的兩個三角形的頂角相等

∴AB邊所對的∠BCA = ∠BDA

同理CD邊所對的∠CBD = ∠CAD

∴△BCP ∽△ADP

∴AP×CP=BP×DP

三、構造共圓,然後再利用圓的的知識和性質解題

例6、已知:如圖,O 是半圓的圓心,C、E 是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO. 求證:CD=GF

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)9

證明:作 GH⊥AB,連接 EO.

∵EF⊥AB,EG⊥CO,

∴∠EFO=∠EGO=90°,

∴G、O、F、E 四點共圓, (四邊形的對角互補,那麼四點共圓

所以∠GFH=∠OEG, (共圓的四個點所連成同側共底的兩個三角形的頂角相等

又∵∠GHF=∠EGO,

∴△GHF∽△OGE,

∵CD⊥AB,GH⊥AB,

∵GH∥CD,

∴EO/GF=GO/GH=CO/CD

又∵CO=EO,

∴CD=GF.

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)10

例7、設 P 是平行四邊形 ABCD 内部的一點,且∠PBA=∠PDA.

求證:∠PAB=∠PCB.

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)11

證明:作過 P 點平行于 AD 的直線,并選一點 E,使 PE=AD=BC,

∵AD∥EP,AD∥BC.

∴四邊形 AEPD 是平行四邊形,四邊形 PEBC 是平行四邊形,

∴AE∥DP,BE∥PC,

∴∠ABP=∠ADP=∠AEP,

∴AEBP 共圓(一邊所對兩角相等).

∴∠BAP=∠BEP=∠BCP,

∴∠PAB=∠PCB

中考數學四點共圓用法(用四點共圓的性質可以使複雜的題目變得簡單易解)12

好了,今天的内容就分享到這裡,如果您有疑問,可以在文章下方留言,歡迎繼續關注,精彩還将繼續!

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
如何填報高考志願少數民族預科班
如何填報高考志願少數民族預科班
升學心裡沒底,蜻蜓探長幫你!一、基本概念少數民族預科班是根據少數民族學生的特點,采取特殊措施,着重提高文化基礎知識,加強基本技能的訓練,使學生在德育、智育、體育幾個方面都得到進一步發展與提高,為在高等院校本、專科進行專業學習打下良好基礎所開...
2025-12-19
桂林山區學校
桂林山區學校
來源:桂林生活網2021-01-0415:47:21我來說說閱讀次拆除工作已經完成大半的舊校區桂林生活網訊近日,在一陣陣機械轟鳴聲與飛揚的塵土中,位于秀峰區信義路西側的原桂林市師範高等專科學校舊校區的拆除工程逐步開始,諸多網友看着地上的殘垣...
2025-12-19
畢業論文的内容結構和格式要求
畢業論文的内容結構和格式要求
畢業論文的内容結構和格式要求?首先要滿足學校和學院對畢業論文的格式要求,下面是我的一些建議:,我來為大家科普一下關于畢業論文的内容結構和格式要求?以下内容希望對你有幫助!畢業論文的内容結構和格式要求首先要滿足學校和學院對畢業論文的格式要求,...
2025-12-19
讀書讓我們一生睿智優雅
讀書讓我們一生睿智優雅
常言道“走如風”,是說人在行走時,如風行水上,有一種自然輕快的美。尤其是女性,有着健康而優美的曲線,迷人的體态和風姿,步态輕盈,袅袅婷婷,更是人們欣賞的焦點。人走路的形态能反映出一個人的個性、情緒及修養等,是人形象的一部分,要想塑造良好的形...
2025-12-19
寫讀書筆記的快速方法
寫讀書筆記的快速方法
暑假陸續開始,正是培養孩子閱讀的好時機。學生們可以利用這個暑假多讀課外書,不能呼朋喚友外出遊玩,和好書交個朋友也會讓你受益匪淺。但不少家長有這樣的困惑,孩子也讀了好多書,寫作水平卻沒有提升,那是怎麼回事呢?那是因為光讀不寫,叫不會讀書。還記...
2025-12-19
Copyright 2023-2025 - www.tftnews.com All Rights Reserved