e的負無窮次方極限等于0,“e”也就是自然常數,是數學科的一種法則。約為2.71828,就是公式為lim(1+1/x)^x,x→∞或lim(1+z)^(1/z),z→0,是一個無限不循環小數,是為超越數。
e作為數學常數,是自然對數函數的底數。有時稱它為歐拉數,以瑞士數學家歐拉命名;也有個較鮮見的名字納皮爾常數,以紀念蘇格蘭數學家約翰·納皮爾引進對數。它就像圓周率π和虛數單位i,e是數學中最重要的常數之一。
e的負無窮次方極限等于0,“e”也就是自然常數,是數學科的一種法則。約為2.71828,就是公式為lim(1+1/x)^x,x→∞或lim(1+z)^(1/z),z→0,是一個無限不循環小數,是為超越數。
e作為數學常數,是自然對數函數的底數。有時稱它為歐拉數,以瑞士數學家歐拉命名;也有個較鮮見的名字納皮爾常數,以紀念蘇格蘭數學家約翰·納皮爾引進對數。它就像圓周率π和虛數單位i,e是數學中最重要的常數之一。