首页
/
每日頭條
/
生活
/
反函數arcsinx求導公式
反函數arcsinx求導公式
更新时间:2025-01-02 08:22:41
如何計算函數y=9x^8 6x arcsin4/x的導數


主要内容:

本文主要通過函數和求導規則,介紹函數y=9x^8 6x arcsin4/x的一階、二階和三階導數計算步驟。本題應用到的函數導數有y=x^a,dy/dx=ax^a-1;y=bx,dy/dx=b;y=arcsincx,dy/dx=c/√(1-c^2*x^2)。

反函數arcsinx求導公式(如何計算函數y9x8)1

主要步驟:※.一階導數計算

對y=9x^8 6x arcsin4/x求一階導數,有:

dy/dx=9*8x^7 6 (4/x)'/√[1-(4/x)^2]

=9*8x^7 6 (-4/x^2)/√[1-(4/x)^2]

=63x^7 6-4/[x√(x^2-16)]。


※.二階導數計算

對dy/dx=63x^7 6-4/[x√(x^2-16)]

繼續對x求導有:

dy^2/dx^2

=63*7x^6 4*[√(x^2-16) x*2x]/[x^2(x^2-16)]

=441x^6 4*[√(x^2-16) 2x^2]/[x^2(x^2-16)]

反函數arcsinx求導公式(如何計算函數y9x8)2

※.三階導數計算

∵dy^2/dx=441x^6 4*[√(x^2-16) 2x^2]/[x^2(x^2-16)],

∴dy^3/dx^3

=2646x^5 4*{[x/√(x^2-16) 4x][x^2(x^2-16)]-[√(x^2-16) 2x^2](4x^3-2*16x)}/[x^4(x^2-16)^2]

=2646x^5 4*{[1/√(x^2-16) 4][x^2(x^2-16)]-2[√(x^2-16) 2x^2](2x^2-16)}/[x^3(x^2-16)^2]

=2646x^5 4*{[1 4√(x^2-16)][x^2(x^2-16)]-2[(x^2-16) 2x^2*√(x^2-16)](2x^2-16)}/[x^3*√(x^2-16)^5]

=2646x^5 4*[(x^2-16)(2*16-3x^2)-4x^2*√(x^2-16)]/[x^3*√(x^2-16)^5]

=2646x^5 4*[(2*16-3x^2)*(x^2-16)-4x^4*√(x^2-16)]/[x^3*√(x^2-16)^5]

=2646x^5 4*[(2*16-3x^2)*√(x^2-16)-4x^4]/[x^3*(x^2-16)^2]。

反函數arcsinx求導公式(如何計算函數y9x8)3

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
Copyright 2023-2025 - www.tftnews.com All Rights Reserved