首页
/
每日頭條
/
圖文
/
高一函數奇偶性的概念練習題
高一函數奇偶性的概念練習題
更新时间:2025-07-16 16:36:20

高一函數奇偶性的概念練習題(高一數學函數奇偶性知識點及練習題)1

1.定義

一般地,對于函數f(x)

(1)如果對于函數定義域内的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

(2)如果對于函數定義域内的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。

(3)如果對于函數定義域内的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對于函數定義域内的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

說明:①奇、偶性是函數的整體性質,對整個定義域而言

②奇、偶函數的定義域一定關于原點對稱,如果一個函數的定義域不關于原點對稱,則這個函數一定不是奇(或偶)函數。

(分析:判斷函數的奇偶性,首先是檢驗其定義域是否關于原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

③判斷或證明函數是否具有奇偶性的根據是定義

2.奇偶函數圖像的特征:

定理奇函數的圖像關于原點成中心對稱圖表,偶函數的圖象關于y軸或軸對稱圖形。

f(x)為奇函數《==》f(x)的圖像關于原點對稱

點(x,y)→(-x,-y)

奇函數在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函數在某一區間上單調遞增,則在它的對稱區間上單調遞減。

3.奇偶函數運算

(1).兩個偶函數相加所得的和為偶函數.

(2).兩個奇函數相加所得的和為奇函數.

(3).一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.

(4).兩個偶函數相乘所得的積為偶函數.

(5).兩個奇函數相乘所得的積為偶函數.

(6).一個偶函數與一個奇函數相乘所得的積為奇函數.

數學函數奇偶性練習題及答案解析

1.下列命題中,真命題是(  )

A.函數y=1x是奇函數,且在定義域内為減函數

B.函數y=x3(x-1)0是奇函數,且在定義域内為增函數

C.函數y=x2是偶函數,且在(-3,0)上為減函數

D.函數y=ax2 c(ac≠0)是偶函數,且在(0,2)上為增函數

解析:選C.選項A中,y=1x在定義域内不具有單調性;B中,函數的定義域不關于原點對稱;D中,當a<0時,y=ax2 c(ac≠0)在(0,2)上為減函數,故選C.

2.奇函數f(x)在區間[3,7]上是增函數,在區間[3,6]上的最大值為8,最小值為-1,則2f(-6) f(-3)的值為(  )

A.10 B.-10

C.-15 D.15

解析:選C.f(x)在[3,6]上為增函數,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6) f(-3)=-2f(6)-f(3)=-2×8 1=-15.

3.f(x)=x3 1x的圖象關于(  )

A.原點對稱 B.y軸對稱

C.y=x對稱 D.y=-x對稱

解析:選A.x≠0,f(-x)=(-x)3 1-x=-f(x),f(x)為奇函數,關于原點對稱.

4.如果定義在區間[3-a,5]上的函數f(x)為奇函數,那麼a=________.

解析:∵f(x)是[3-a,5]上的奇函數,

∴區間[3-a,5]關于原點對稱,

∴3-a=-5,a=8.

答案:8

1.函數f(x)=x的奇偶性為(  )

A.奇函數         B.偶函數

C.既是奇函數又是偶函數 D.非奇非偶函數

解析:選D.定義域為{x|x≥0},不關于原點對稱.

2.下列函數為偶函數的是(  )

A.f(x)=|x| x B.f(x)=x2 1x

C.f(x)=x2 x D.f(x)=|x|x2

解析:選D.隻有D符合偶函數定義.

3.設f(x)是R上的任意函數,則下列叙述正确的是(  )

A.f(x)f(-x)是奇函數

B.f(x)|f(-x)|是奇函數

C.f(x)-f(-x)是偶函數

D.f(x) f(-x)是偶函數

解析:選D.設F(x)=f(x)f(-x)

則F(-x)=F(x)為偶函數.

設G(x)=f(x)|f(-x)|,

則G(-x)=f(-x)|f(x)|.

∴G(x)與G(-x)關系不定.

設M(x)=f(x)-f(-x),

∴M(-x)=f(-x)-f(x)=-M(x)為奇函數.

設N(x)=f(x) f(-x),則N(-x)=f(-x) f(x).

N(x)為偶函數.

4.已知函數f(x)=ax2 bx c(a≠0)是偶函數,那麼g(x)=ax3 bx2 cx(  )

A.是奇函數

B.是偶函數

C.既是奇函數又是偶函數

D.是非奇非偶函數

解析:選A.g(x)=x(ax2 bx c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3 bx2 cx是奇函數;因為g(x)-g(-x)=2ax3 2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函數.

5.奇函數y=f(x)(x∈R)的圖象必過點(  )

A.(a,f(-a)) B.(-a,f(a))

C.(-a,-f(a)) D.(a,f(1a))

解析:選C.∵f(x)是奇函數,

∴f(-a)=-f(a),

即自變量取-a時,函數值為-f(a),

故圖象必過點(-a,-f(a)).

内容整理自網絡,如有侵權,請聯系我們删除。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
戶外廣告門牌設置
戶外廣告門牌設置
戶外廣告(招牌)審批管理規定(試行)按照《壽陽縣“建美好家園創魅力城市”提檔升級攻堅行動方案》要求,為進一步加強戶外廣告設置管理,規範戶外廣告設置和審批程序,根據有關法律、法規,結合壽陽縣實際情況,制定本規定。一、在壽陽縣城區規劃範圍内設置...
2025-07-16
座右銘的經典句子
座右銘的經典句子
#頭條創作挑戰賽#《座右銘》90年代,曾經在上海雜志《青年一代》刊登過一句征友的短句:“真誠待人,客觀對事,乃是我人生之座右銘。”短句刊登後,引來無數筆友的來信,來不及一一回複,被指責也多多。這才發現,過去的大明星被責怪的情景,而今我也碰到...
2025-07-16
如何處理高血壓危象
如何處理高血壓危象
高血壓危象是高血壓急症之一,是指由于周圍血管阻力突然上升,緻使血壓明顯升高引起的一系列臨床表現,血壓以收縮壓顯著升高為主,可高達33~34kPa(250~260mmHg),舒張壓也相應升高至16~18kPa(120~140mmHg)。《危重...
2025-07-16
高峰堵點注意事項
高峰堵點注意事項
三天小長假近在眼前2022中秋節高速免費嗎?天氣如何?哪些路段易擁堵?各地防疫要求是怎麼樣?你關心的都在這裡!放假安排根據《重大節假日免收小型客車通行費實施方案》安排,中秋節高速公路并不享受免費通行政策,車輛通行仍需正常收費。今年中秋節假期...
2025-07-16
高壓鍋炖羊肉的做法
高壓鍋炖羊肉的做法
高壓鍋炖羊肉的做法?在寒冬的夜晚,就着一鍋熱氣騰騰的羊肉,嘬兩口小酒,肆無忌憚的砸吧着嘴巴,和家人朋友闊談人生,那滋味别提多幸福了,今天小編就來聊一聊關于高壓鍋炖羊肉的做法?接下來我們就一起去研究一下吧!高壓鍋炖羊肉的做法在寒冬的夜晚,就着...
2025-07-16
Copyright 2023-2025 - www.tftnews.com All Rights Reserved