1、第一要建立空間觀念,提高空間想象力。從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自制一些空間幾何模型并反複觀察,這有益于建立空間觀念,是個好辦法。
有的同學有空就對一些立體圖形進行觀察、揣摩,并且判斷其中的線線、線面、面面位置關系,探索各種角、各種垂線作法,這對于建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構造定理的“圖”,對于建立空間觀念也是很有幫助的。
2、第二要掌握基礎知識和基本技能。要用圖形、文字、符号三種形式表達概念、定理、公式,要及時不斷地複習前面學過的内容。這是因為《立體幾何》内容前後聯系緊密,前面内容是後面内容的根據,後面内容既鞏固了前面的内容,又發展和推廣了前面内容。
在解題中,要書寫規範,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據,不論對于計算題還是證明題都應該如此,不能想當然或全憑直觀;對于文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數而不把它寫出來是不行的。要學會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。
3、第三要不斷提高各方面能力。通過聯系實際、觀察模型或類比平面幾何的結論來提出命題;對于提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的内容是以研究性課題的形式給出的,要從中體驗創造數學知識。要不斷地将所學的内容結構化、系統化。
所謂結構化,是指從整體到局部、從高層到低層來認識、組織所學知識,并領會其中隐含的思想、方法。所謂系統化,是指将同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統攝全局、組織整體的概念,用這些概念統攝早先偶爾接觸過的或是未察覺出明顯關系的已知知識間的聯系,提高整體觀念。