初中數學中,關于二次函數這一章是非常重要的一章,也是中考中必考的一章,而在本章中關于抛物線的相關問題,尤其是抛物線的對稱性和平移問題,也是一個重點内容,中考中常考的知識點。而解決此類問題,需要掌握其對稱和平移的規律,才能為我們解題帶來更多方便,今天和同學們一起對于這一塊的知識點重點突破,完全掌握起來。
一、抛物線關于x軸、y軸、原點、頂點對稱的抛物線的解析式。
二次函數圖像的對稱一般有四種情況,可以用一般式或頂點式表達,分别是:1. 關于x軸對稱,y=ax² bx c關于x軸對稱後,得到的解析式是y=-ax²-bx-c;y=a(x-h)² k關于x軸對稱後,得到的解析式是y=-a(x-h)²-k. 2. 關于y軸對稱,y=ax² bx c 關于y軸對稱後,得到的解析式是y=ax²-bx c;y=a(x-h)² k關于y軸對稱後,得到的解析式;y=a(x h)² k。3. 關于原點對稱,y=ax² bx c關于原點對稱後,得到的解析式是y=-ax² bx-c;y=a(x-h)² k關于原點對稱後,得到的解析式是y=-a(x-h)² k;4. 關于頂點對稱, y=ax² bx c關于頂點對稱後,得到的解析式是y=-ax²-bx c-b²/2a;y=a(x-h)² k關于頂點對稱後,得到的解析式是y=-a(x-h)² k.
需要注意的是,對于以上四種對稱要在結合開個方向、對稱軸的位置以及與y軸的交點三個方面結合圖像理解記憶。而對于抛物線關于定點對稱問題我們一般都是化成頂點式再變換。掌握抛物線的四種對稱方式,理解公式的推導過程,結合下面例題掌握該考點。
二、求抛物線上、下、左、右平移的抛物線的解析式
二次函數圖像平移①二次函數圖像平移的本質是點的平移,關鍵在坐标。②圖像平移口訣:左加右減、上加下減。平移口訣主要針對二次函數頂點式。希望同學們掌握二次函數圖象平移口訣和方法,通過下面練習做到理解領會。
三、與抛物線平移有關的壓軸題
抛物線常出現在中考中的壓軸題中,如果考察對稱軸公式,那麼一般代入直接求解;如果是假設出平移之後的解析式即可得出圖像與X軸的交點坐标,再利用勾股定理求出即可;表示出各點坐标,利用射影定理求解。下面的壓軸題就是利用上面的解題方法進行求解,希望同學們能夠掌握起來。
對于二次函數這一章,不管是最基本的基礎知識,還是各種熱門的考點,或者是最後的壓軸題,都需要同學們認認真真的掌握起來,這對于考試得高分是非常關鍵的,希望同學們能夠掌握本章的内容,總結做題的規律,掌握解題的方法,形成自己的思維方式,各個知識點,逐一重點突破。
,