首页
/
每日頭條
/
科技
/
中望3d彈簧的建模方法
中望3d彈簧的建模方法
更新时间:2026-01-14 18:53:21

現實生活中的物體是由點、線/邊、面構成的。而在三維建模領域,計算機依據讀取到的物體的形狀、位置、大小等幾何信息和拓撲信息(即點、線、面等拓撲元素的數量及其相互間的連接關系)來描述物體,構建模型。

但所有三維建模内核的表達均存在幾何拓撲表達上的“誤差”,這就不可避免地導緻某些幾何模型在計算機表達中存在幾何容差。因此,我們需借助某種建模算法來處理這種存在幾何容差的模型,讓容差模型在計算機中能繼續被創建和編輯。

國外的ACIS和Parasolid(代表性軟件有NX、Solidworks)、國内的Overdrive(中望3D采用的自主内核)等少數主流三維建模内核所采用的“建模算法”是容差建模技術,這也是三維建模内核的關鍵核心技術之一。

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)1

圖1:基本的幾何元素:點、線/邊、面

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)2

圖2:幾何建模(過程示意)

那麼,何為“容差建模”?大家相對熟悉的曲面建模、實體建模是基于對象類型(曲面、實體)來定義建模手段的,零件建模、裝配建模是基于模型狀态(零件、裝配)來定義建模方法的。由此可知,容差建模就是在三維建模軟件中處理幾何容差問題的建模手段和方法。

局部容差:更符合真實應用場景

當前,業界公認的傳統容差建模的技術實現方法可分為兩種:基于全局單一容差的容差體系和基于自适應容差的容差體系,兩者的主要區别在于軟件采用何種方式來确定要執行多大的容差數值。簡單來說,前者在所有計算中都隻通過一個容差數值來進行判斷和執行,因此存儲的信息量小,計算速度快,其缺點是容差數值過大會導緻精度損失,模型質量下降;容差數值過小則會增加計算時間,且容易把來自其它設計平台的數據識别成開放的間隙,甚至導緻建模不穩定。後者在涉及容差的計算時,通過特定的算法計算拓撲結構中的頂點、邊緣位置,在幾何模型不同位置使用最适合的容差值,從而能夠減少出現建模不穩定問題。該方法的瓶頸在于計算過程複雜、計算速度慢,特别對于參數化的幾何建模平台,由于有特征樹驅動模型,每次重生成建模過程都要重新進行計算,效率極其低下。

既然全局單一容差、自适應容差在實際應用上都存在着各自的問題,那麼,有沒有第三種更為完善的容差體系呢?答案是局部容差,它吸收了全局單一容差和自适應容差兩者的優點,更加符合真實應用場景。具體而言,局部容差與自适應容差的區别在于容差值不是自适應判斷的,而是在分析實際幾何模型情況的基礎上,通過設定定義規則來計算和獲取容差頂點和容差邊緣的數據,并依此設定相應的容差範圍,超過該範圍的幾何拓撲繼續維持原來的幾何容差。目前,主流建模軟件涉及容差處理的功能主要包括數據交互、布爾運算操作。

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)3

圖3:局部容差的幾何示意圖

中望3D容差建模:建模效率與精度并重

應用自主三維幾何建模内核(Overdrive)的中望3D采用基于局部容差的容差建模方法,并進一步完善了數據交互、布爾運算、工程圖投影等功能的算法,使得容差環境下也能順暢創建模型。最新版本的中望3D軟件支持對全局默認建模公差的設定,同時所有涉及容差計算的建模命令也均支持局部容差的設定。

那麼,中望3D容差建模的實際工作中的執行情況怎樣呢?下面,我們使用同一幾何模型(如圖4,模型素材多處幾何拓撲的重組均涉及容差的計算)、相同的容差參數設定,分别在中望3D、NX®、Solidworks®中執行涉及容差計算的建模操作(布爾并集、差集、交集),通過比較三者的成功率、時間和精度來檢驗中望3D基于局部容差的容差體系在實際建模中的效果。

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)4

圖4 由兩相交實體組成的容差模型

具體的測試結果(數據基于單個模型,僅供參考)如下:

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)5

表:測試結果統計

測試結果顯示,默認容差均無法執行計算,判斷為容差模型。分别調整容差值到0.05mm、0.07mm後,再執行建模命令。此時,更小的容差值能得到正确的結果,表明該容差值執行成功。

對于同等條件下的容差模型:

成功率方面:中望3D=NX>Solidworks;

計算效率(速度)方面:中望3D>NX>Solidworks;

精度方面:通過容差建模的成功率隻能判斷出“中望3D和NX比Solidworks更高”,但中望3D和NX均在容差值為0.05mm時運行成功,因此兩者的建模精度還需進一步驗證比較。

如圖5中分别在中望3D和NX中以0.05mm的容差值執行相交命令,對比生成的相交線的曲線質量來判斷其精度高低:

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)6

圖5:相交模型生成相交線

圖6上圖中望3D生成的相交線的控制點為6個,下圖NX生成的相交線的控制點為10個。根據Nurbs樣條曲線的幾何逼近原理,“控制點越多,越逼近精确結果”,由此可判斷在同樣的容差值下,布爾運算的精度為NX>中望3D。

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)7

中望3d彈簧的建模方法(容差建模技術在中望3D的應用)8

圖6:樣條曲線的控制點情況

綜上判斷,在和其它國外主流三維建模軟件的對比中,中望3D局部容差建模技術在效率和成功率上均占據一定優勢,在模型精度上也可圈可點,能夠幫助用戶提高建模效率和質量。

小結:

容差建模雖不是直接構建幾何模型的方法,但卻是建模過程必不可少的處理容差問題的重要技術,也是建模内核的重點研究方向之一。

目前,容差建模的技術實現方法主要有全局單一容差、自适應容差和局部容差三種。其中,局部容差對容差模型的容差邊緣、容差頂點的判斷和計算更準确和高效,也更符合實際應用需求。

國産中望3D基于局部容差的容差建模方法,進一步完善了數據交互、布爾運算、工程圖投影等功能的算法,使得容差環境下也能順暢創建模型,建模效率更高。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
電磁爐炒菜也有技巧哦!
電磁爐炒菜也有技巧哦!
電磁爐炒菜也有技巧哦!電磁爐炒菜也有技巧哦!1、電磁爐在使用過程中,煮水或煮湯時不要把鍋蓋蓋嚴。原因是,電磁爐熱效率太快,水在很短的時間内就沸騰了,蓋得太緊水易溢出來,流進電磁爐機體内,易短路造成電磁爐損壞。任何電器都怕水。2、在清潔電磁爐時注意,不要用太濕的布去擦洗,面闆太髒時隻需用毛巾蘸點牙膏用...
2026-01-14
電磁輻射的危害
電磁輻射的危害
随着生活質量的提高,我們在生活中所使用的電器類産品也越來越多了,相對的電磁輻射就會越來越嚴重了,有很多時候都是防不勝防,還有很多的城市建設高壓線,醫院的某些檢查等等,都是會帶來電磁輻射的,那麼我們能做到的就是盡量的避免電磁輻射的幹擾,盡可能的遠離電磁輻射。電磁輻射給人體帶來的傷害也是不容忽視的,輕微...
2026-01-14
空調不制熱的原因
空調不制熱的原因
空調主要是我們日常生活中經常用的一種常見的家用的電器。日常生活中的主要是可以制冷制熱情深的可以除濕一些常見的功能,空調也是有非常多的故障出現的,很多空調都會出現一些不制熱的原因,空調不制熱的主要是一些空調毛細管和一些單向閥有問題,也就是空調内部的因素,都可以進行解決。日常生活中的空調不制熱拿由于室外...
2026-01-14
愛“吃”垃圾的廚房食物垃圾處理器
愛“吃”垃圾的廚房食物垃圾處理器
食物垃圾處理器:(Foodwasteprocessor)是安裝于家庭廚房洗菜盆的排水口處的廚房電器。因為其可方便地将菜頭菜尾、剩菜剩飯等食物性廚餘垃圾粉碎後排入下水道,能即時、方便、快捷清潔廚房,避免了食物垃圾因儲存而滋生病菌、蚊蟲和異味,解決下水道容易堵塞等問題而廣受歡迎。上圖為食品廢物處理器的安...
2026-01-14
用微波爐煎中藥更加方便快捷哦!
用微波爐煎中藥更加方便快捷哦!
用微波爐煎中藥更加方便快捷哦!用微波爐煎中藥更加方便快捷哦!傳統的煎中藥方法,是将中藥罐置于煤氣竈或電爐之上煎煮,操作十分繁瑣,時間和水量都不易掌握,藥液中的揮發性成分和水分容易損失,藥液容易溢出。這使得許多人一提到煎中藥就十分頭痛。現在推薦一個省時省力煎中藥的方法——使用微...
2026-01-14
Copyright 2023-2026 - www.tftnews.com All Rights Reserved