矩陣的逆的求法:最簡單的辦法是用增廣矩陣。如果要求逆的矩陣是A,則對增廣矩陣(AE)進行初等行變換,E是單位矩陣,将A化到E,此時此矩陣的逆就是原來E的位置上的那個矩陣,原理是A逆乘以(AE)=(EA逆)初等行變換就是在矩陣的左邊乘以A的逆矩陣得到的。
性質定理:
1、可逆矩陣一定是方陣。
2、如果矩陣A是可逆的,其逆矩陣是唯一的。
3、A的逆矩陣的逆矩陣還是A。記作(A-1)-1=A。
4、可逆矩陣A的轉置矩陣AT也可逆,并且(AT)-1=(A-1)T(轉置的逆等于逆的轉置)
5、若矩陣A可逆,則矩陣A滿足消去律。即AB=O(或BA=O),則B=O,AB=AC(或BA=CA),則B=C。
6、兩個可逆矩陣的乘積依然可逆。
7、矩陣可逆當且僅當它是滿秩矩陣。