首页
/
每日頭條
/
圖文
/
如何從線性回歸到深度學習
如何從線性回歸到深度學習
更新时间:2026-01-19 01:17:02

如何從線性回歸到深度學習(深度學習中的線性代數)1

易混基礎概念

  • 标量:單獨一個數
  • 向量:一行/列數
  • 矩陣:二維數組
  • 張量:一般指多維(0 維張量是标量,1 維張量是向量,2 維張量是矩陣)
  • 轉置:沿主對角線折疊

在 Numpy 中定義矩陣的方法,以及進行轉置的方法:

import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) a = a.reshape(3, 2) print(a) [[1 2] [3 4] [5 6]] 複制代碼

基本算數關系

與高等數學中矩陣相乘内容一緻:

a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) print(a * b) print(a.dot(b)) print(np.dot(a, b)) print(np.linalg.inv(a)) # 星(*) [[ 5 12] [21 32]] # 點乘 [[19 22] [43 50]] # 點乘 [[19 22] [43 50]] # 逆運算 [[-2. 1. ] [ 1.5 -0.5]] 複制代碼

範數

範數是一個函數,用于衡量長度大小的一個函數。數學上,範數包括向量範數和矩陣範數。

向量範數

我們先讨論向量的範數。向量是有方向有大小的,這個大小就用範數來表示。

如何從線性回歸到深度學習(深度學習中的線性代數)2

嚴格意義上來說,範數是滿足下列性質的任意函數:

如何從線性回歸到深度學習(深度學習中的線性代數)3

  • 當 p=2 時,範數(,可簡化寫成)稱為歐幾裡得範數,可以計算距離。但是我們看到這裡有一個開方運算,因此為了去掉這個開方,我們有可能求的是範數的平方,即範數,這就會減少一次開放運算,在後面提到的損失函數中,範數和平方範數都提供了相同的優化目标,因此平方範數更常用,計算起來也更簡單,可以通過計算,這速度就很快了。
  • 當 p=1 時,範數()是向量各元素絕對值之和,在機器學習領域,對于區分 0 和非 0 來說,範數比範數更好用。
  • 當 p=0 時,範數實際上不是一個範數,大多數提到範數的地方都會強調說這不是一個真正意義上的範數,用來表示這個向量中有多少個非 0 元素,但是實際上它是非常有用的,在機器學習中的正則化和稀疏編碼中有應用。在一個例子中是這麼說的:判斷用戶名和密碼是否正确,用戶名和密碼是兩個向量,時,則登錄成功,時,用戶名和密碼有一個錯誤,時,用戶名和密碼都錯誤。我們知道有這麼回事,在日後看到相關内容時知道就好了。
  • 當 p 為無窮大時,範數也被稱為無窮範數、最大範數。表示向量中元素絕對值中最大的。

矩陣範數

對于矩陣範數,我們隻聊一聊 Frobenius 範數,簡單點說就是矩陣中所有元素的平方和再開方,還有其他的定義方法,如下,其中表示的共轭轉置,tr為迹;表示的奇異值:

如何從線性回歸到深度學習(深度學習中的線性代數)4

奇異值分解

我們熟悉特征分解矩陣中:,奇異分解與之類似:,其中矩陣的行和列的值為、正交矩陣、對角矩陣、正交矩陣,矩陣對角線上的元素稱為的奇異值,其中非零奇異值是或的特征值的平方根;稱為的左奇異向量,是的特征向量;稱為的右奇異向量,是的特征向量。因為奇異矩陣無法求逆,而求逆又是研究矩陣的非常好的方法,因此考慮退而求其次的方法,求僞逆,這是最接近矩陣求逆的,把矩陣化為最舒服的形式去研究其他的性質,僞逆把矩陣化為主對角線上有秩那麼多的非零元素,矩陣中其他的元素都是零,這也是統計學中常用的方法,在機器學習中耶非常好用。

定義

  • 對角矩陣:隻有主對角線含有非零元素;
  • 單位向量:具有單位範數的向量,;
  • 向量正交:如果兩個向量都非零,則夾角 90 度;
  • 标準正交:相互正交、範數為 1;
  • 正交矩陣:行向量和列向量分别标準正交;
  • 特征分解:将矩陣分解為特征向量和特征值;
  • 特征值和特征向量:中的和;
  • 正定、半正定、負定:特征值都正、非負、都負。

總結

線性代數的一大特點是“一大串”,統一的知識體系,相互之間緊密聯系,非常漂亮,在深度學習中有重要的應用,還是應該要學好。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
将士為什麼跟着安祿山謀反(安祿山怒責顔杲卿背叛)
将士為什麼跟着安祿山謀反(安祿山怒責顔杲卿背叛)
  唐鸩(之五)   常山失守之後,顔杲卿和袁履謙被叛軍押往洛陽,安祿山斥責顔杲卿道:“你從前隻是範陽一個戶曹,因為我的舉薦,幾年之間做到了太守,你為什麼還要背叛我?”   顔杲卿罵道:“你本是一個放羊的羯奴,皇上提拔你做了三道節度使,恩幸無比,你為什麼謀反?我家世代為唐臣,食唐俸祿,從前受過你的保薦,難道就要和你一起謀反?我是為國讨賊,隻恨沒能殺了你,哪來...
2026-01-19
推薦免費的音遊(來自東方的神秘力量)
推薦免費的音遊(來自東方的神秘力量)
  《喵斯快跑》向來都是一個聯動鬼才。   在我還沉浸在它與《多娜多娜》聯動的餘韻中時,突然公布的一個新聯動,再次打了我一個措手不及,讓我回想起了那個已遺忘許久的身份——東方廚。      太美辣!   根據這一個月陸陸續續放出的聯動情報,不難看出這次聯動的“東方味兒”相當純正,不愧是“老二次元”發行商——心動發行的遊戲,怕不是内部有不少老懂哥。選擇的聯動曲...
2026-01-19
秦時明月曉夢結局是什麼(秦時明月不可忽視的曉夢大師)
秦時明月曉夢結局是什麼(秦時明月不可忽視的曉夢大師)
  《秦時明月》動畫中儒家是最講究長幼尊卑和禮數的一個門派,桑海儒家小聖賢莊有三位當家,分别是掌門人伏念、二當家顔路和三當家張良,被稱為“齊魯三傑”。三人雖同屬儒家一脈,但性格其實頗為不同,張良身處儒家實則崇尚墨家,顔路喜歡恬淡不問世事,唯有大師兄伏念最講禮數,曾因天明少羽之事責怪兩位師弟。      伏念推崇王道治國,獨創“聖王劍法”,對于儒家學說和天下大...
2026-01-19
養老生活别提有多舒心(養老生活越過越甜)
養老生活别提有多舒心(養老生活越過越甜)
     9月19日,鄭州市金水區梓聞社會工作服務中心的社工陪伴老人練習書法。本報記者 王铮 攝   □本報記者 王向前   今年10月1日,《河南省養老服務條例》(以下簡稱《條例》)将施行。為貫徹實施好《條例》,9月23日,省政府新聞辦舉行新聞發布會,發布河南養老服務發展願景。   疏通“堵點”,《條例》肩負重大責任   我省60歲以上人口1796萬人,占...
2026-01-19
強化源頭管控消除火災隐患(推動多部門加強日常監管消除火災隐患)
強化源頭管控消除火災隐患(推動多部門加強日常監管消除火災隐患)
     近日,上海市嘉定區檢察院督促該區市場監督管理局對違法改裝電動自行車履行行政監管職責的公益訴訟案例,因與公共安全相關度高,受到市民廣泛關注,獲評上海市檢察機關2020年度公益訴訟十大典型案例。   事情要從2020年5月說起。上海市檢察院經調研發現,電動自行車充電引發的火災次數日趨增加,影響公衆安全,遂在該市檢察機關開展電動自行車充電安全管理領域公益...
2026-01-19
Copyright 2023-2026 - www.tftnews.com All Rights Reserved