首页
/
每日頭條
/
圖文
/
如何從線性回歸到深度學習
如何從線性回歸到深度學習
更新时间:2026-01-11 06:15:09

如何從線性回歸到深度學習(深度學習中的線性代數)1

易混基礎概念

  • 标量:單獨一個數
  • 向量:一行/列數
  • 矩陣:二維數組
  • 張量:一般指多維(0 維張量是标量,1 維張量是向量,2 維張量是矩陣)
  • 轉置:沿主對角線折疊

在 Numpy 中定義矩陣的方法,以及進行轉置的方法:

import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) a = a.reshape(3, 2) print(a) [[1 2] [3 4] [5 6]] 複制代碼

基本算數關系

與高等數學中矩陣相乘内容一緻:

a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) print(a * b) print(a.dot(b)) print(np.dot(a, b)) print(np.linalg.inv(a)) # 星(*) [[ 5 12] [21 32]] # 點乘 [[19 22] [43 50]] # 點乘 [[19 22] [43 50]] # 逆運算 [[-2. 1. ] [ 1.5 -0.5]] 複制代碼

範數

範數是一個函數,用于衡量長度大小的一個函數。數學上,範數包括向量範數和矩陣範數。

向量範數

我們先讨論向量的範數。向量是有方向有大小的,這個大小就用範數來表示。

如何從線性回歸到深度學習(深度學習中的線性代數)2

嚴格意義上來說,範數是滿足下列性質的任意函數:

如何從線性回歸到深度學習(深度學習中的線性代數)3

  • 當 p=2 時,範數(,可簡化寫成)稱為歐幾裡得範數,可以計算距離。但是我們看到這裡有一個開方運算,因此為了去掉這個開方,我們有可能求的是範數的平方,即範數,這就會減少一次開放運算,在後面提到的損失函數中,範數和平方範數都提供了相同的優化目标,因此平方範數更常用,計算起來也更簡單,可以通過計算,這速度就很快了。
  • 當 p=1 時,範數()是向量各元素絕對值之和,在機器學習領域,對于區分 0 和非 0 來說,範數比範數更好用。
  • 當 p=0 時,範數實際上不是一個範數,大多數提到範數的地方都會強調說這不是一個真正意義上的範數,用來表示這個向量中有多少個非 0 元素,但是實際上它是非常有用的,在機器學習中的正則化和稀疏編碼中有應用。在一個例子中是這麼說的:判斷用戶名和密碼是否正确,用戶名和密碼是兩個向量,時,則登錄成功,時,用戶名和密碼有一個錯誤,時,用戶名和密碼都錯誤。我們知道有這麼回事,在日後看到相關内容時知道就好了。
  • 當 p 為無窮大時,範數也被稱為無窮範數、最大範數。表示向量中元素絕對值中最大的。

矩陣範數

對于矩陣範數,我們隻聊一聊 Frobenius 範數,簡單點說就是矩陣中所有元素的平方和再開方,還有其他的定義方法,如下,其中表示的共轭轉置,tr為迹;表示的奇異值:

如何從線性回歸到深度學習(深度學習中的線性代數)4

奇異值分解

我們熟悉特征分解矩陣中:,奇異分解與之類似:,其中矩陣的行和列的值為、正交矩陣、對角矩陣、正交矩陣,矩陣對角線上的元素稱為的奇異值,其中非零奇異值是或的特征值的平方根;稱為的左奇異向量,是的特征向量;稱為的右奇異向量,是的特征向量。因為奇異矩陣無法求逆,而求逆又是研究矩陣的非常好的方法,因此考慮退而求其次的方法,求僞逆,這是最接近矩陣求逆的,把矩陣化為最舒服的形式去研究其他的性質,僞逆把矩陣化為主對角線上有秩那麼多的非零元素,矩陣中其他的元素都是零,這也是統計學中常用的方法,在機器學習中耶非常好用。

定義

  • 對角矩陣:隻有主對角線含有非零元素;
  • 單位向量:具有單位範數的向量,;
  • 向量正交:如果兩個向量都非零,則夾角 90 度;
  • 标準正交:相互正交、範數為 1;
  • 正交矩陣:行向量和列向量分别标準正交;
  • 特征分解:将矩陣分解為特征向量和特征值;
  • 特征值和特征向量:中的和;
  • 正定、半正定、負定:特征值都正、非負、都負。

總結

線性代數的一大特點是“一大串”,統一的知識體系,相互之間緊密聯系,非常漂亮,在深度學習中有重要的應用,還是應該要學好。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
潘越雲和齊豫誰漂亮(許景淳齊豫師妹)
潘越雲和齊豫誰漂亮(許景淳齊豫師妹)
  台灣著名音樂大師李泰祥共有七大女弟子,其中,齊豫、潘越雲、葉倩文三位為大陸歌迷所熟知,尤其是齊豫、葉倩文兩位更是被廣為提及,另外四位相比這三位,于大陸歌迷而言,名字要陌生得許多,許景淳,就是這四位之一。      圖為許景淳與恩師李泰祥合唱《告别》   許景淳出道于台灣民歌時代的末期,23歲的她已是台灣音樂大師李泰祥的弟子。許景淳的父親許丕龍為旅美知名人...
2026-01-11
steam求生之路2能氪金嗎(利益與良知的艱難選擇)
steam求生之路2能氪金嗎(利益與良知的艱難選擇)
  不知道大家還記不記得冒險解謎獨立遊戲《旁觀者》?反烏托邦題材的解謎遊戲,加上無處不在的監視與道德抉擇,選擇當好人自己就要死,當壞人卻又良心上過不去,玩過的小夥伴估計都非常印象深刻。這款備受好評的《旁觀者》官方微博宣布,《旁觀者2(Beholder 2)》的制作已經全面展開,并且遊戲已經在Steam上架,預計2018年發售,移動端也有可能跟上哦~     ...
2026-01-11
正月18出門有哪些講究(正月十九到了老傳統)
正月18出門有哪些講究(正月十九到了老傳統)
  #頭條創作挑戰賽#   正月十九,年封口!“2迎2忌”要記住,寓意順順利利,吉祥如意。   老話說:“正月十九,年封口”。明天就是正月十九封口日了,什麼是“年封口”呢?很好理解,到了明天,預示着春節正式結束了,要走上正軌道路,不能還沉迷于過年當中,也就是徹底封口了。你知道嗎?這天還有老傳統“2迎2忌”,寓意順順利利好運來!      一迎:聖母娘娘這是流...
2026-01-11
泡面創始人吳百福的勵志故事(34方便面之父)
泡面創始人吳百福的勵志故事(34方便面之父)
  衆所周知方便面是風靡全球的一種既美味又快捷的速食食品,這種方便食品的發明造福了忙碌的上班族和奔波的旅客們。輕便易攜的重量和僅需要熱水就可以加工的簡單操作,讓這些行色匆匆的人在緊張的工作和疲憊的旅行過程中,能夠吃上一口熱乎的湯面。   享受着方便面帶來的一切便利時,我們都要感謝它的發明者:方便面之父安藤百福。從發明者的名字看來,這是一個日本名字,事實上方便...
2026-01-11
索尼psvita能玩什麼遊戲(索尼PSVita終告破解可惜來晚了)
索尼psvita能玩什麼遊戲(索尼PSVita終告破解可惜來晚了)
  據日本媒體報道,索尼PS Vita在5年前正式上市,由于使用了封閉的聯網操作系統和專用的存儲卡,一直以來都是破解方面的老大難。而現在,PS Vita的系統和存儲卡已經被徹底破解。哎!這一等就是五年。      索尼PS Vita終告破解(圖片來自cnbeta)   在前,雖有暫時性的破解方法,使其可以運行PSP遊戲和自制軟件,但每次都是在系統升級後失效。...
2026-01-11
Copyright 2023-2026 - www.tftnews.com All Rights Reserved