首页
/
每日頭條
/
圖文
/
如何從線性回歸到深度學習
如何從線性回歸到深度學習
更新时间:2025-12-14 17:23:07

如何從線性回歸到深度學習(深度學習中的線性代數)1

易混基礎概念

  • 标量:單獨一個數
  • 向量:一行/列數
  • 矩陣:二維數組
  • 張量:一般指多維(0 維張量是标量,1 維張量是向量,2 維張量是矩陣)
  • 轉置:沿主對角線折疊

在 Numpy 中定義矩陣的方法,以及進行轉置的方法:

import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) a = a.reshape(3, 2) print(a) [[1 2] [3 4] [5 6]] 複制代碼

基本算數關系

與高等數學中矩陣相乘内容一緻:

a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) print(a * b) print(a.dot(b)) print(np.dot(a, b)) print(np.linalg.inv(a)) # 星(*) [[ 5 12] [21 32]] # 點乘 [[19 22] [43 50]] # 點乘 [[19 22] [43 50]] # 逆運算 [[-2. 1. ] [ 1.5 -0.5]] 複制代碼

範數

範數是一個函數,用于衡量長度大小的一個函數。數學上,範數包括向量範數和矩陣範數。

向量範數

我們先讨論向量的範數。向量是有方向有大小的,這個大小就用範數來表示。

如何從線性回歸到深度學習(深度學習中的線性代數)2

嚴格意義上來說,範數是滿足下列性質的任意函數:

如何從線性回歸到深度學習(深度學習中的線性代數)3

  • 當 p=2 時,範數(,可簡化寫成)稱為歐幾裡得範數,可以計算距離。但是我們看到這裡有一個開方運算,因此為了去掉這個開方,我們有可能求的是範數的平方,即範數,這就會減少一次開放運算,在後面提到的損失函數中,範數和平方範數都提供了相同的優化目标,因此平方範數更常用,計算起來也更簡單,可以通過計算,這速度就很快了。
  • 當 p=1 時,範數()是向量各元素絕對值之和,在機器學習領域,對于區分 0 和非 0 來說,範數比範數更好用。
  • 當 p=0 時,範數實際上不是一個範數,大多數提到範數的地方都會強調說這不是一個真正意義上的範數,用來表示這個向量中有多少個非 0 元素,但是實際上它是非常有用的,在機器學習中的正則化和稀疏編碼中有應用。在一個例子中是這麼說的:判斷用戶名和密碼是否正确,用戶名和密碼是兩個向量,時,則登錄成功,時,用戶名和密碼有一個錯誤,時,用戶名和密碼都錯誤。我們知道有這麼回事,在日後看到相關内容時知道就好了。
  • 當 p 為無窮大時,範數也被稱為無窮範數、最大範數。表示向量中元素絕對值中最大的。

矩陣範數

對于矩陣範數,我們隻聊一聊 Frobenius 範數,簡單點說就是矩陣中所有元素的平方和再開方,還有其他的定義方法,如下,其中表示的共轭轉置,tr為迹;表示的奇異值:

如何從線性回歸到深度學習(深度學習中的線性代數)4

奇異值分解

我們熟悉特征分解矩陣中:,奇異分解與之類似:,其中矩陣的行和列的值為、正交矩陣、對角矩陣、正交矩陣,矩陣對角線上的元素稱為的奇異值,其中非零奇異值是或的特征值的平方根;稱為的左奇異向量,是的特征向量;稱為的右奇異向量,是的特征向量。因為奇異矩陣無法求逆,而求逆又是研究矩陣的非常好的方法,因此考慮退而求其次的方法,求僞逆,這是最接近矩陣求逆的,把矩陣化為最舒服的形式去研究其他的性質,僞逆把矩陣化為主對角線上有秩那麼多的非零元素,矩陣中其他的元素都是零,這也是統計學中常用的方法,在機器學習中耶非常好用。

定義

  • 對角矩陣:隻有主對角線含有非零元素;
  • 單位向量:具有單位範數的向量,;
  • 向量正交:如果兩個向量都非零,則夾角 90 度;
  • 标準正交:相互正交、範數為 1;
  • 正交矩陣:行向量和列向量分别标準正交;
  • 特征分解:将矩陣分解為特征向量和特征值;
  • 特征值和特征向量:中的和;
  • 正定、半正定、負定:特征值都正、非負、都負。

總結

線性代數的一大特點是“一大串”,統一的知識體系,相互之間緊密聯系,非常漂亮,在深度學習中有重要的應用,還是應該要學好。

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
常用拟聲詞大全
常用拟聲詞大全
常用拟聲詞大全?拟聲詞:模拟聲音的詞,又稱為象聲詞、摹聲詞、狀聲詞它是摹拟自然界聲音的一種詞彙,下面我們就來說一說關于常用拟聲詞大全?我們一起去了解并探讨一下這個問題吧!常用拟聲詞大全拟聲詞:模拟聲音的詞,又稱為象聲詞、摹聲詞、狀聲詞。它是...
2025-12-14
觸目橫斜千萬朵賞心不過三兩枝
觸目橫斜千萬朵賞心不過三兩枝
今年工作調動之後,工作生活都變得忙碌起來,每天都感覺自己像小時候玩的陀螺,不停的旋轉,還得恨不得多抽自己幾下,轉的快一點。。微雨周末的早晨忽然發現原本普通的小花園已經雜草叢生,雜亂無章。于是整理起來。打算把去年冬天凍壞的栀子花和茉莉一起處理...
2025-12-14
孕期肚皮發癢是怎麼辦
孕期肚皮發癢是怎麼辦
​随着孕期孕周增加,很多孕媽都會出現肚皮癢的情況。癢得難受的時候,總是會忍不住去撓。原以為撓過之後會有所緩解,沒想到是越撓越癢。那到底為什麼會出現肚皮瘙癢呢?應該怎樣護理為好?今天小編就來為孕媽們一一解答一下。瑪瑞莎百分百客樣照一、孕期肚皮...
2025-12-14
六親是哪六親為什麼說六親不認
六親是哪六親為什麼說六親不認
中華文化源遠流長,博大精深,裡面有很多我們經常挂在嘴邊的老話和俗語,即便到了現在我們也是經常的提起這些俗語。這些老話雖然經過這麼長時間的發展,但是裡面的意思卻越來越鮮為人知了,而我們所言之事又常常引用這些老話,如果不知道其内在的意思,多少會...
2025-12-14
大唐官府最快加點
大唐官府最快加點
大唐在夢幻西遊手遊裡是最熱門的職業之一,很多玩家因為他爆表的輸出,帥氣的身姿選擇了這個門派,如何加點才能使他更強呢?今天小編給大家帶來大唐官府詳細加點攻略,希望大家喜歡!1、力敏大唐2、血耐大唐3、力耐大唐4、骷髅大唐大家來讨論下吧,這四種...
2025-12-14
Copyright 2023-2025 - www.tftnews.com All Rights Reserved