調幾算平不等式是主要應用于求某些函數的最值及證明的不等式。其表述為:兩個正實數的算術平均數大于或等于它們的幾何平均數,其基本的表達方式為:(a+b)/2≥√(ab)。
函數(function)的定義通常分為傳統定義和近代定義,函數的兩個定義本質是相同的,隻是叙述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、映射的觀點出發。函數的近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數關系的本質特征。