首页
/
每日頭條
/
生活
/
雙變量存在性或任意性的原理
雙變量存在性或任意性的原理
更新时间:2025-12-26 13:10:44

上期練習:

雙變量存在性或任意性的原理(存在性或任意性)1

我們說過讓大家用特例法,來快速解決。

分析:因為an是等差數列,所以通項公式為一個一次函數,又看a1,a3,a9是等比數列,因此很簡單的一次函數即可滿足。

所以an=n即可以,所以原式很簡單解決。1 3 9/2 4 10=13/16

本期内容:一個問題中含有兩個變量,一邊是任意,另一邊又是存在性,很多時候學生一看見這樣問題就暈,覺得這是一個難點。

但這樣的問題能克服。解決雙變量“存在性或任意性”問題的關鍵就是将含有全稱量詞或存在量詞的條件“等價轉化”為兩個函數值域之間的關系(或兩個函數最值之間的關系),目的在于培養學生的邏輯推理素養和良好數學思維品質。

類型—:形如“對任意x1屬于A,都存在x2屬于B,使得g(x2)=f(x1)成立。

例:已知函數

雙變量存在性或任意性的原理(存在性或任意性)2

若對任意x1屬于[-1,1],總存在x2屬于[0,2],使得f(x1)=g(x2)成立,則實數a的取值範圍。

分析:因為g(x)在研究範圍内,單調遞增,沒有未知數,很快求出g(x2)屬于[-1/3,6]

f(x)是二次函數,首先求出對稱軸x=-1/3,開口向上,結合函數圖象可知f(-1/3)是最小值,且為-a2-2a-1/3,f(1)是最大值=-a2-2a 5;

關鍵轉化:f(x)中的任何值在g(x)都能找到有使他們相等,即f(x)的範圍小一點,g(x)範圍大一點,再即說f(x)的值域是[-1/3,6]的子集

所以:

雙變量存在性或任意性的原理(存在性或任意性)3

類型二:形如“存在x1屬于A及存在x2屬于B,使得g(x2)=f(x1)成立。

變式訓練:已知函數f(x)=2x,g(x)=kx-2k 2(k>0),若存在x1屬于[0.1/2],及x2屬于[0,1/2],使得f(x1)=g(x2)成立,則實數k的取值範圍為?

分析:和前面有些類似,都是在相等情況下,但也有不同。因為在f(x)找到一個函數值,則在g(x)中能夠找到函數值讓他們相等,本類問題的實質,即是說兩個函數的值域不能為空集。

我們下期評講,大家先練習。

視頻講解

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
人這輩子最怕忽然聽懂一首歌
人這輩子最怕忽然聽懂一首歌
人這輩子最怕忽然聽懂一首歌?文章被作者:“一讀”授權使用想知道關于“一讀”更多消息,請搜索微信号:iiiread公衆号:一讀,下面我們就來說一說關于人這輩子最怕忽然聽懂一首歌?我們一起去了解并探讨一下這個問題吧!人這輩子最怕忽然聽懂一首歌文...
2025-12-26
什麼是投影面積
什麼是投影面積
什麼是投影面積?水平投影面積是指物體在水平面上的投影面積投影面積是一個名詞,常出現在數學中,指的是陰影外輪廓線包圍的面積,今天小編就來說說關于什麼是投影面積?下面更多詳細答案一起來看看吧!什麼是投影面積水平投影面積是指物體在水平面上的投影面...
2025-12-26
範明繼子近照
範明繼子近照
《武林外傳》中,“邢捕頭”的一句“我看好你喲”成為家喻戶曉的口頭禅。飾演“邢捕頭”的範明雖然顔值不高,但他的每個角色都讓人印象深刻。無論是《炊事班的故事》中的“老高”,還是《手機》中的“黑磚頭”,在情景喜劇中,範明似乎成了不可或缺的“黃金配...
2025-12-26
普洱茶什麼時候喝
普洱茶什麼時候喝
普洱茶什麼時候喝?空腹的情況下不要喝茶普洱茶有助消化的功效,在空腹的時候喝普洱茶會讓肚子更餓,如果腸胃本身就不好,會加重腸胃的負擔,我來為大家科普一下關于普洱茶什麼時候喝?以下内容希望對你有幫助!普洱茶什麼時候喝空腹的情況下不要喝茶。普洱茶...
2025-12-26
關于說的成語
關于說的成語
關于說的成語?秕言謬說,秕:壞,不良的;謬:錯誤錯誤的言論,下面我們就來說一說關于關于說的成語?我們一起去了解并探讨一下這個問題吧!關于說的成語秕言謬說,秕:壞,不良的;謬:錯誤。錯誤的言論。不容分說,容:允許。指不允許分辯陳說。代人說項,...
2025-12-26
Copyright 2023-2025 - www.tftnews.com All Rights Reserved